Bài 8 : \(\Delta ABC\) có a = 3 , b= \(2\sqrt{3}\) , c=5 . Chứng minh rằng tam giác ABC tù
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
3 tháng 9 2018
Bài 2:
kẻ hình thang ABCD
kẻ 2 đường cao AH và BK nối B với H
xét tam giác ABH và tam giác KBH
có ^ABH = ^KBH ( 2gocs so le trong )
HB chung
=> tam giác ABH = tam giác KBH (cạnh huyền +góc nhọn )
=> AB =HK ( 2 cạnh tương ứng )
xét tam giác BKC có BC>KC ( trong tam giác vuông cạnh huyền là cạnh lớn nhất )(1)
xét tam giác AHD có AD>HD (trong tam giác vuông cạnh huyền là cạnh lớn nhất)(2)
từ (1) và (2) => BC+AD >KC+HD
ta lại có DH+DK +HK =DC
mà AB=HK (C/m )
=> DH+DK+AB =dc
ta có DC-AB = DH+DK+AB-AB= DH+DK
mà DH+DK<BC+AD(c/m)
=>DC -AB< BC+AD
vậy tổng hai cạnh bên của hình thang lớn hơn hiệu hai đáy
PT
1
PT
1
CM
25 tháng 3 2017
Do B tù nên ta có góc ngoài của đỉnh B là góc nhọn, suy ra các góc A, C nhọn.
Ta có:
\(cosC=\frac{a^2+b^2-c^2}{2ab}=\frac{9+12-25}{2.3.2\sqrt{3}}=-\frac{1}{3\sqrt{3}}< 0\)
\(\Rightarrow C>90^0\)
\(\Rightarrow\Delta ABC\) là tam giác tù