Cho tam giác ABC vuông tại A biết sin C = 3/5 số đo góc C làm tròn đến độ là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{3}{4}\approx\tan37^0\\ \Leftrightarrow\widehat{C}\approx37^0\)
2: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(BH\cdot BC=AB^2\left(1\right)\)
Xét ΔBDC vuông tại B có BA là đường cao ứng với cạnh huyền DC
nên \(AD\cdot AC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BC=AD\cdot AC\)
a: AC=9
b: \(\tan B=\dfrac{AC}{AB}=\dfrac{9}{12}\)
Xét ΔABC vuông tại A có
\(\sin C=\dfrac{AB}{BC}=\dfrac{4}{5}\)
nên \(\widehat{C}=53^0\)
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
hay BC=15(cm)
Xét ΔABC có AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
hay \(\dfrac{BD}{9}=\dfrac{CD}{12}\)
mà BD+CD=15cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được
\(\dfrac{BD}{9}=\dfrac{CD}{12}=\dfrac{15}{21}=\dfrac{5}{7}\)
Do đó: \(BD=\dfrac{45}{7}cm;CD=\dfrac{60}{7}cm\)
\(sinC=\dfrac{3}{5}\Rightarrow\widehat{C}\approx37^o\)