K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2020

b) \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}+\frac{x+1}{3}=\frac{x+7}{12}\)

<=> \(\frac{13\left(x+1\right)}{12}-\frac{5x+3}{6}=\frac{x+7}{12}\)

<=> 13(x + 1) - 2(5x + 3) = x + 7

<=> 13x + 13 - 10x - 6 = x + 7

<=> 3x + 7 = x + 7

<=> 3x + 7 - x = 7

<=> 2x + 7 = 7

<=> 2x = 7 - 7

<=> 2x = 0

<=> x = 0

c) 2x + 4(x - 2) = 5

<=> 2x + 4x - 8 = 5

<=> 6x - 8 = 5

<=> 6x = 5 + 8

<=> 6x = 13

<=> x = 13/6

7 tháng 4 2022

1) 2x – (3 – 5x) = 4( x +3)

<=>2x-3+5x=4x+12

<=>2x-3+5x-4x-12=0

<=>3x-15=0

<=>x=5

7 tháng 4 2022

2) 5(2x-3) - 4(5x-7) =19 - 2(x+11)

<=>10x-15-20x+28=19-2x-22

<=>10x-15-20x+28-19+2x+22=0

<=>-8x+16=0

<=>x=2

25 tháng 3 2017

a)\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}\)

=\(\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}\ge6\)(1)

mặt khác 5-2x-x2=6-(x+1)2\(\le6\)(2)

từ (1) và (2)=>dấu = xảy ra khi VP =6 =VTtức x=-1

b)\(\sqrt{3x^2+6x+12}\)+\(\sqrt{5x^4+10x^2+9}\)

=\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2+1\right)^2+4}>5\)(x2+1>0)(1')

mặt khác VP=5-2(x+1)2\(\le\)5(2')

từ (1') và (2')=> pt vô nghiệm

21 tháng 9 2019

vì sao lại có : căn(3(x+1)^2+4) +căn(5(x+1)^2+16) >=6 vậy ạ?

 

19 tháng 6 2023

\(\left(x+2\right)-2=0\)

\(\Rightarrow x+2-2=0\)

\(\Rightarrow x=0\)

\(\left(x+3\right)+1=7\)

\(\Rightarrow x+3+1=7\)

\(\Rightarrow x+4=7\)

\(\Rightarrow x=3\)

\(\left(3x-4\right)+4=12\)
\(\Rightarrow3x-4+4=12\)

\(\Rightarrow3x=12\)

\(\Rightarrow x=4\)

\(\left(5x+4\right)-1=13\)

\(\Rightarrow5x+4-1=13\)

\(\Rightarrow5x+3=13\)

\(\Rightarrow5x=10\)

\(\Rightarrow x=2\)

\(\left(4x-8\right)-3=5\)

\(\Rightarrow4x-8-3=5\)

\(\Rightarrow4x-11=5\)

\(\Rightarrow4x=16\)

\(\Rightarrow x=4\)

\(8-\left(2x+4\right)=2\)

\(\Rightarrow8-2x-4=2\)

\(\Rightarrow4-2x=2\)

\(\Rightarrow2x=2\)

\(\Rightarrow x=1\)

\(7+\left(5x+2\right)=14\)

\(\Rightarrow7+5x+2=14\)

\(\Rightarrow9+5x=14\)

\(\Rightarrow5x=5\)

\(\Rightarrow x=1\)

\(5-\left(3x-11\right)=1\)

\(\Rightarrow5-3x+11=1\)

\(\Rightarrow16-3x=1\)

\(\Rightarrow3x=15\)

\(\Rightarrow x=5\)

\(1,\)

\(2x\left(x-3\right)-\left(3-x\right)=0\)

\(\Leftrightarrow2x\left(x-3\right)+\left(x-3\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=3\end{cases}}\)

\(2,\)

\(3x\left(x+5\right)-6\left(x+5\right)=0\)

\(\Leftrightarrow\left(3x-6\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-6=0\\x+5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)

\(3,\)

\(x^4-x^2=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

\(4,\)

\(x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

\(5,\)

\(x\left(x+6\right)-10\left(x-6\right)=0\)

\(\Leftrightarrow x^2+6x-10x+60=0\)

\(\Leftrightarrow x^2-4x+60=0\)

\(\Leftrightarrow x^2-4x+4+56=0\)

\(\Leftrightarrow\left(x-2\right)^2=-56\)(Vô lý)

=> Phương trình vô nghiệm

6 tháng 8 2020

a, ( x2 + x )2 - 14 ( x2 + x ) + 24

= (x2 + x)2 - 2(x2 + x) -12(x2 + x) + 24

= (x2 + x).(x2 + x -2) - 12(x2 + x -2)

= (x2 + x -2).(x2 + x -12)

= (x2 + 2x - x - 2).(x2 + 4x - 3x - 12)

=[x.(x+2)-(x+2)].[x.(x+4)-3(x+4)]

= (x+2).(x-1).(x+4).(x-3)

= x4 + 2x3 - 13x2 - 14x + 24

b, ( x2 + x )2 + 4x2 + 4x - 12

= x4 + 2x3 + x2 + 4x2 + 4x -12

= x4 + 2x3 + 5x2 + 4x -12

c, x4 + 2x3 + 5x2 + 4x - 12

= x4 - x3 + 3x3 - 3x2 + 8x2 - 8x +12x -12

= x3(x-1) + 3x2(x-1) + 8x(x-1) + 12(x-1)

= (x-1) . (x3 + 3x2 + 8x +12)

= (x-1) . ( x3 +2x2 + x2 + 2x + 6x +12)

= (x-1). [x2(x+2) + x(x+2) + 6(x+2)]

= (x-1).(x+2).(x2 + x+ 6)