Tìm x , biết (2/3x-1/2).3/4-2/5x = 4và 1/4
Giúp mk với. Mk cần gấp lắm luôn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left|3x-2\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=4\\3x-2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{2}{3}\end{matrix}\right.\)
b: Ta có: \(\left|5x-3\right|=\left|x-7\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-3=x-7\\5x-3=7-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-4\\6x=10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{5}{3}\end{matrix}\right.\)
a)\(x-15\%x=\frac{1}{3}\)
\(x.\left(1-15\%\right)=\frac{1}{3}\)
\(x.\frac{-280}{3}=\frac{1}{3}\)
\(x=\frac{1}{3}:\frac{-280}{3}\)
\(x=\frac{-1}{280}\)
Vậy \(x=\frac{-1}{280}\)
b)\(\frac{4}{5}x-x-\frac{3}{2}x+\frac{6}{5}=\frac{1}{2}-\frac{4}{3}\)
\(-\frac{17}{10}x+\frac{6}{5}=\frac{-5}{6}\)
\(-\frac{17}{10}x=-\frac{5}{6}-\frac{6}{5}\)
\(-\frac{17}{10}x=\frac{-61}{30}\)
\(x=\frac{-61}{30}:\frac{-17}{10}\)
\(x=\frac{61}{51}\)
Vậy \(x=\frac{61}{51}\)
\(2^x:1+2^x:2+...+2^x:49=2^{49}-1\)
\(2^x.1+2^x.\frac{1}{2}+...+2^x.\frac{1}{49}=2^{49}-1\)
\(2^x.\left(1+\frac{1}{2}+...+\frac{1}{49}\right)=2^{49}-1\)
Đặt: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}\)
=> \(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}\)
=> \(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^{49}}\right)\)
=> \(A=1-\frac{1}{2^{49}}=\frac{2^{49}-1}{2^{49}}\)
\(2^{x-1}+2^{x-2}+2^{x-3}+...+2^{x-49}=2^{49}-1\)
<=> \(\frac{2^x}{2}+\frac{2^x}{2^2}+\frac{2^x}{2^3}+...+\frac{2^x}{2^{49}}=2^{49}-1\)
<=> \(2^x\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}\right)=2^{49}-1\)
<=> \(2^x.\frac{2^{49}-1}{2^{49}}=2^{49}-1\)
<=> \(2^x=2^{49}\)
<=> x = 49.
Ta biến đổi như sau:
\(3x^2-3xy-5x-y=-20\Leftrightarrow3x^2+x-3xy-y-6x-2=-22\)
\(\Leftrightarrow x\left(3x+1\right)-y\left(3x+1\right)-2\left(3x+1\right)=-22\)
\(\Leftrightarrow\left(3x+1\right)\left(x-y-2\right)=-22\)
Ta có bảng sau:
3x+1 | -22 | -11 | -2 | -1 | 1 | 2 | 11 | 22 |
x | \(-\frac{23}{3}\left(Loại\right)\) | -4(Nhận) | -1(N) | (L) | 0(N) | (L) | (L) | 7(N) |
x-y-2 | 1 | 2 | 11 | 22 | -22 | -11 | -2 | -1 |
y | -8(Nhận) | -14(N) | 20(N) | 6(N) |
Vậy ta tìm được các cặp (-4;-8); (-1;-14); (0;20); (7;6).
Chúc em học tốt :))
a) |-5x|=3x-16 (1)
Nếu |-5x|=- 5x<=>-5x\(\ge\)0 <=>x\(\ge\)0
| -5x|=5x<=>-5x<0 <=> x< 0
Khi x\(\ge\) 0 thì (1) <=> -5x=3x-16
<=> -5x-3x=-16
<=> - 8x= -16
<=> x=2 (t/m điều kiện)
Khi x<0 thì (1) <=> 5x=3x-16
<=>5x-3x=-16
<=> 2x=-16
<=> x= - 8 (t/m điều kiện )
Vậy S={ 2;-16}
b) |3x-1|-x=2 (2)
Ta có : |3x--1|= 3x-1<=>3x-1\(\ge\) 0 <=> x\(\ge\) \(\frac{1}{3}\)
|3x-1| = -(3x-1)<=> 3x-1<0<=>x<\(\frac{1}{3}\)
Khi x\(\ge\) \(\frac{1}{3}\) thì (2) <=> 3x-1-x=2
<=> 3x-x=1+2
<=> 2x=3
<=> x=\(\frac{3}{2}\)(t/m điều kiện )
Khi x<\(\frac{1}{3}\) thì (2) <=> -(3x-1)-x=2
<=>3x+1-x=2
<=> 3x-x=-1+2
<=> 2x=1
<=> x=\(\frac{1}{2}\)(t/m điều kiện)
Vậy S={\(\frac{3}{2}\);\(\frac{1}{2}\)}
a, \(2x\left(x-3\right)-15+5x=0\\ \Rightarrow2x\left(x-3\right)-\left(15-5x\right)=0\\ \Rightarrow2x\left(x-3\right)-5\left(3-x\right)=0\\ \Rightarrow\left(2x+5\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}\\x=3\end{matrix}\right.\)
b, \(x^3-7x=0\\ \Rightarrow x\left(x^2-7\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=\pm7\end{matrix}\right.\)
c, \(\left(2x-3\right)^2-\left(x+5\right)^2=0\\ \Rightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\\ \Rightarrow\left(x-8\right)\left(3x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Xem lại đề câu d
a: \(\Leftrightarrow12x^2-10x-12x^2-28x=7\)
=>-38x=7
hay x=-7/38
b: \(\Leftrightarrow-10x^2-5x+9x^2+6x+x^2-\dfrac{1}{2}x=0\)
=>1/2x=0
hay x=0
c: \(\Leftrightarrow18x^2-15x-18x^2-14x=15\)
=>-29x=15
hay x=-15/29
d: \(\Leftrightarrow x^2+2x-x-3=5\)
\(\Leftrightarrow x^2+x-8=0\)
\(\text{Δ}=1^2-4\cdot1\cdot\left(-8\right)=33>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-1-\sqrt{33}}{2}\\x_2=\dfrac{-1+\sqrt{33}}{2}\end{matrix}\right.\)
e: \(\Leftrightarrow-15x^2+10x-10x^2-5x-5x=4\)
\(\Leftrightarrow-25x^2=4\)
\(\Leftrightarrow x^2=-\dfrac{4}{25}\left(loại\right)\)
\(\left(\frac{2}{3}x-\frac{1}{2}\right).\frac{3}{4}-\frac{2}{5}x=4\frac{1}{4}\)
\(\frac{1}{2}x-\frac{3}{8}-\frac{2}{5}x=4\frac{1}{4}\)
\(\frac{1}{10}x=\frac{17}{4}+\frac{3}{8}\)
\(\frac{1}{10}x=\frac{37}{8}\)
\(x=\frac{185}{4}\)
\(\left(\frac{2}{3}x-\frac{1}{2}\right).\frac{3}{4}-\frac{2}{5}x=4\frac{1}{4}\)
\(\frac{1}{2}x-\frac{3}{8}-\frac{2}{5}x=\frac{17}{4}\)
\(\frac{1}{2}x-\frac{2}{5}x=\frac{17}{4}+\frac{3}{8}\)
\(\frac{1}{10}x=\frac{37}{8}\)
\(x=\frac{37}{8}:\frac{1}{10}\)
\(x=\frac{185}{4}\)