Cho A = 5 + 52 + 53 + … + 52019. Chứng tỏ 4A+ 5 là số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) M = \(5+5^2+5^3+...+5^{80}\)
\(\Leftrightarrow M=5.\left(1+5\right)+5^3\left(1+5\right)+...+5^{79}\left(1+5\right)\)
\(\Leftrightarrow M=5.6+5^3.6+...+5^{79}.6\)
\(\Leftrightarrow M=6.\left(5+5^3+...+5^{79}\right)⋮6\)
=> M chi hết cho 6 => điều phải chứng minh
) M = (5+5^2) + (5^3+5^4) + … + (5^79+5^80)
M = 5(1+5) + 5^3(1+5) + … + 5^79(1+5)
M= 5.6 + 5^3.6 + … + 5^79.6
M = 6(5+5^3+…+5^79) chia hết cho 6
b) Ta thấy : M = 5 + 52+ 53+ ... + 580 cchia hết cho số nguyên tố 5
Mặt khác, do: 52 + 53 + ... 580 chia hết cho 52 (vì tất cả các số hạng đều chia hết cho 52)
=> M = 5 + 52 + 53 + ... + 580 không chia hết cho 52 (do 5 không chia hết cho 52)
=> M chia hết cho 5 nhưng không chia hết cho 52
=> M không phải số chính phương
\(A=5+5^2+5^3+...+5^{2021}\)
\(=5\left(1+5\right)+5^2\left(1+5\right)+...+5^{2020}\left(1+5\right)\)
\(=5.6+5^2.6+...+5^{2020}.6\)
\(=6\left(5+5^2+...+5^{2020}\right)\)
Vì \(6\left(5+5^2+...+5^{2020}\right)\) ⋮6
⇒A không là số chính phương
A = 5 + 52 + 53 +.......+52019
\(5A=5^2+5^3+5^4+...+5^{2020}\)
=> \(5A-A=5^{2020}-5\)
=> \(4A+5=5^{2020}=\left(5^{1010}\right)^2\) là số chính phương.
\(A=5+5^2+5^3+...+5^{992}\)
\(\Rightarrow5A=5^2+5^3+5^4+...+5^{993}\)
\(\Rightarrow4A=5A-A=5^2+5^3+5^4+...+5^{993}-5-5^2-5^3-...-5^{992}=5^{993}-5\)
\(\Rightarrow4A+5=5^{993}-5+5=5^{993}=\left(5^3\right)^{331}=125^{331}\) là một lũy thừa của 125
3xy+x+3y=4
⇒x(3y+1)+3y+1=5
⇒x(3y+1)+(3y+1)=5
⇒(3y+1)(x+1)=5
⇒x+1; 3y+1 ∈ ƯU(5)={±1;±5}
Mà 3y+1 là ước chia 3 dư 1 ⇒ 3y+1 ∈ {1,-5}
Lập bảng:
3xy+1 | 1 | -5 |
y | 0 | -2 |
x+1 | 5 | -1 |
x | 4 | -2 |
Vậy (x;y)=(-2;-2); (4;0)
Làm thử cách này nhé ( cách này ko bt lớp 6 có đc dùng ko)
Ta thấy các lũy thừa của 5 có số mũ lớn hơn 2 đều chia hết cho 25
=> A chia 25 dư 5 => 4A chia 25 dư 20 => 4A+5 chia hết cho 25 mà 4A+5 chia hết cho 5 nên 4A+5 là số chính phương
Cách này đơn giản hơn mấy cách tách nhưng ko bt cô giáo có cho e lm kiểu này ko :))
Ta có : A=5+52+53+...+52019
\(\Rightarrow\)5A=52+53+54+...+52020
\(\Rightarrow\)5A-A=(52+53+54+...+52020)-(5+52+53+...+52019)
4A=52020-5
\(\Rightarrow\)4A+5=52020-5+5=52020=(52)1010
Vì 4A+5 bằng bình phương của 1 số tự nhiên nên 4A+5 là số chính phương
Vậy 4A+5 là số chính phương.