\(Cho tam giác ABC có ba góc nhọn (AB < AC), M là trung điểm của BC. Trên tia đối tia MA lấy điểm E sao ch a/ Chứng minh: AMB = EMB và AC // BE. b/ Kẻ và . Chứng minh: SA = HE c/ Biết và . Tính số đo và d/ Gọi I là một điểm trên cạnh AC, K là một điểm trên cạnh EB sao cho AI = EK. Chứng minh: Ba điểm I, M, K thẳng hàng\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)
a, Xét \(\Delta MAB-\Delta MDC:\)
\(\widehat{M_1}=\widehat{M_2}\)
\(AM=MD\left(gt\right)\)
\(BM=MC\left(gt\right)\)
\(\Rightarrow\)\(\Delta MAB=\Delta MDC\left(c.g.c\right)\)
b, Có \(\Delta MAB=\Delta MDC\left(cmt\right)\)
\(\Rightarrow\widehat{A_1}=\widehat{D_1}\)
Hay AB // CD.
\(a,\left\{{}\begin{matrix}AM=MD\\BM=MC\\\widehat{AMB}=\widehat{CMD}\end{matrix}\right.\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\\ \Rightarrow\widehat{ABM}=\widehat{DCM}\\ \text{Mà 2 góc này ở vị trí so le trong nên }AB\text{//}CD\\ b,AH\bot BC;DK\bot BC\Rightarrow AH\text{//}DK\\ \left\{{}\begin{matrix}AM=MD\\\widehat{AHM}=\widehat{DKM}=90^0\\\widehat{AMH}=\widehat{KMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AHM=\Delta DKM\left(c.g.c\right)\\ \Rightarrow AH=DK\)
a: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB//CD
Bài 3:
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra:AC//BD và AC=BD
c: Xét ΔABC và ΔDCB có
AB=DC
\(\widehat{ABC}=\widehat{DCB}\)
BC chung
Do đó: ΔABC=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)
a: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB//CD