Mọi người giúp em ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1.
Khi mở khóa K:
\(I_m=I_1=0,4A\)
Khi đóng khóa K:
\(I_m=I_1+I_2=0,6\Rightarrow I_2=0,2A\)
\(U_1=0,4\cdot5=2V\)
\(\Rightarrow U_2=U_1=2V\)
\(\Rightarrow U=U_1=U_2=2V\)
\(R_2=\dfrac{U_2}{I_2}=\dfrac{2}{0,2}=10\Omega\)
a: Thay x=0 và y=5 vào (d), ta được:
(m-2)x0+m=5
=>m=5
c: Để hai đườg song song thì m-2=2
hay m=4
Câu 10:
a: ĐKXĐ: \(\left\{{}\begin{matrix}x\notin\left\{2;-1\right\}\\y\ne-5\end{matrix}\right.\)
\(A=\dfrac{y+5}{x^2-4x+4}\cdot\dfrac{x^2-4}{x+1}\cdot\dfrac{x-2}{y+5}\)
\(=\dfrac{y+5}{y+5}\cdot\dfrac{\left(x^2-4\right)}{x^2-4x+4}\cdot\dfrac{x-2}{x+1}\)
\(=\dfrac{\left(x^2-4\right)\cdot\left(x-2\right)}{\left(x+1\right)\left(x^2-4x+4\right)}\)
\(=\dfrac{\left(x+2\right)\left(x-2\right)\cdot\left(x-2\right)}{\left(x+1\right)\left(x-2\right)^2}=\dfrac{x+2}{x+1}\)
b: \(A=\dfrac{x+2}{x+1}\)
=>A không phụ thuộc vào biến y
Khi x=1/2 thì \(A=\left(\dfrac{1}{2}+2\right):\left(\dfrac{1}{2}+1\right)=\dfrac{5}{2}:\dfrac{3}{2}=\dfrac{5}{2}\cdot\dfrac{2}{3}=\dfrac{5}{3}\)
Câu 12:
a: \(A=\dfrac{x}{x+3}+\dfrac{2x}{x-3}+\dfrac{9-3x^2}{x^2-9}\)
\(=\dfrac{x}{x+3}+\dfrac{2x}{x-3}+\dfrac{9-3x^2}{\left(x+3\right)\left(x-3\right)}\)
\(=\dfrac{x\left(x-3\right)+2x\left(x+3\right)+9-3x^2}{\left(x+3\right)\left(x-3\right)}\)
\(=\dfrac{x^2-3x+2x^2+6x+9-3x^2}{\left(x+3\right)\left(x-3\right)}\)
\(=\dfrac{3x+9}{\left(x+3\right)\left(x-3\right)}=\dfrac{3\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{3}{x-3}\)
b: Khi x=1 thì \(A=\dfrac{3}{1-3}=\dfrac{3}{-2}=-\dfrac{3}{2}\)
\(x+\dfrac{1}{3}=\dfrac{10}{3}\)
=>\(x=\dfrac{10}{3}-\dfrac{1}{3}\)
=>\(x=\dfrac{9}{3}=3\left(loại\right)\)
Vậy: Khi x=3 thì A không có giá trị
c: \(B=A\cdot\dfrac{x-3}{x^2-4x+5}\)
\(=\dfrac{3}{x-3}\cdot\dfrac{x-3}{x^2-4x+5}\)
\(=\dfrac{3}{x^2-4x+5}\)
\(x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1>=1\forall x\) thỏa mãn ĐKXĐ
=>\(B=\dfrac{3}{x^2-4x+5}< =\dfrac{3}{1}=3\forall x\) thỏa mãn ĐKXĐ
Dấu '=' xảy ra khi x-2=0
=>x=2
a: Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}=90^0\)
Do đó: BFEC là tứ giác nội tiếp
Hướng dẫn: A đạt GTLN khi \(\dfrac{1}{A}\) đạt GTNN
Ta có: \(x^2+2\ge0\forall x\)
\(\Rightarrow A=\dfrac{1}{x^2+2}\le\dfrac{1}{2}\forall x\)
Vậy GTLN của A là 1/2
=> A
Đề 1:
Bài 1:
\(a,=\sqrt{\left(\sqrt{7}+1\right)^2}-\left|-1+\sqrt{7}\right|=\sqrt{7}+1-\sqrt{7}+1=2\\ b,=2\sqrt{2}-4\sqrt{2}-5\sqrt{2}+\dfrac{\sqrt{2}}{2}=\dfrac{\sqrt{2}}{2}-7\sqrt{2}=\dfrac{-13\sqrt{2}}{\sqrt{2}}\)
Bài 2:
\(PT\Leftrightarrow\sqrt{\left(x-\dfrac{1}{2}\right)^2}=\dfrac{1}{2}\Leftrightarrow\left|x-\dfrac{1}{2}\right|=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}+\dfrac{1}{2}=1\\x=-\dfrac{1}{2}+\dfrac{1}{2}=0\end{matrix}\right.\)
Bài 3:
\(a,M=\dfrac{a-2\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\dfrac{2\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)^2\left(\sqrt{a}+1\right)}=\dfrac{2}{\sqrt{a}+1}\\ b,M< 1\Leftrightarrow\dfrac{2}{\sqrt{a}+1}-1< 0\Leftrightarrow\dfrac{1-\sqrt{a}}{\sqrt{a}+1}< 0\\ \Leftrightarrow1-\sqrt{a}< 0\left(\sqrt{a}+1>0\right)\\ \Leftrightarrow a>1\)
a) đkxđ: \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{\sqrt{x}+x+2}{1-x}\right):\)\(\left(\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{x-3+\sqrt{x}}{x-\sqrt{x}}\right)\)\(=\left[\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}+x+2}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\right]\)\(:\left[\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{x-3+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]\)
\(=\left[\frac{x-\sqrt{x}-\sqrt{x}-x-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\)\(:\left[\frac{x-1-x+3-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]\)
\(=\frac{-2\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)\(:\frac{2-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{-2\left(\sqrt{x}+1\right).\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(2-\sqrt{x}\right)}\)\(=\frac{-2\sqrt{x}}{2-\sqrt{x}}\)
b) Để P = -1 thì \(\frac{-2\sqrt{x}}{2-\sqrt{x}}=-1\Leftrightarrow\frac{2\sqrt{x}}{2-\sqrt{x}}=1\Rightarrow2\sqrt{x}=2-\sqrt{x}\Leftrightarrow3\sqrt{x}=2\Leftrightarrow\sqrt{x}=\frac{2}{3}\Leftrightarrow x=\frac{4}{9}\)(nhận)
c) Để P < -1/2 thì \(\frac{-2\sqrt{x}}{2-\sqrt{x}}< \frac{-1}{2}\Leftrightarrow\frac{2\sqrt{x}}{2-\sqrt{x}}>\frac{1}{2}\Rightarrow4\sqrt{x}>2-\sqrt{x}\Leftrightarrow5\sqrt{x}>2\Leftrightarrow\sqrt{x}>\frac{2}{5}\Leftrightarrow x>\frac{4}{25}\)
Vậy để P < -1/2 thì \(\hept{\begin{cases}x>\frac{4}{25}\\x\ne1\end{cases}}\)
d) Ta có \(x=4+2\sqrt{3}=3+2\sqrt{3}+1=\left(\sqrt{3}\right)^2+2\sqrt{3}+1=\left(\sqrt{3}+1\right)^2\)
Thay \(x=\left(\sqrt{3}+1\right)^2\)vào P, ta có:
\(P=\frac{-2\sqrt{x}}{2-\sqrt{x}}=\frac{-2\sqrt{\left(\sqrt{3}+1\right)^2}}{2-\sqrt{\left(\sqrt{3}+1\right)^2}}=\frac{-2\left(\sqrt{3}+1\right)}{2-\sqrt{3}-1}=\frac{-2\left(\sqrt{3}+1\right)}{1-\sqrt{3}}\)\(=\frac{-2\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}=\frac{-2\left(4+2\sqrt{3}\right)}{1-3}=4+2\sqrt{3}\)