K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2021

Bạn tham khảo nhé:

Trên tia đối của KG lấy điểm F sao cho KG=KF.

Ta có: ΔABC đều => ^A=600. Xét ΔADE có: ^A=600, AD=AE

=> ΔADE đều. Mà G là trọng tâm của ΔADE

=> G cũng là giao của 3 đường trung trực trong ΔABC 

=> DG=AG (T/c đường trung trực) (1)

Xét ΔGDK và ΔFCK:

KD=KC

^DKG=^CKF              => ΔGDK=ΔFCK (c.g.c)

KG=KF

=> DG=CF (2 cạnh tương ứng). (2)

Từ (1) và (2) => AG=CF.

Cũng suy ra đc: ^GDK=^FCK (2 góc tương ứng) => ^GDE+^EDK=^FCB+^BCK

Lại có: ED//BC (Vì ΔADE đều) => ^EDK=^BCK (So le trong)

=> ^GDE=^FCB (Bớt 2 vế cho ^EDK, ^BCK) (3)

Xét ΔΔADE: Đều, G trọng tâm => DG cũng là phân giác ^ADE

=> ^GDE=^ADE/2=300

Tương tự tính được: ^GAD=300 => ^GDE=^GAD hay ^GDE=^GAB (4)

Từ (3) và (4) => ^GAB=^FCB

Xét ΔAGB và ΔCFB có:

AB=CB

^GAB=^CFB           => ΔAGB=ΔCFB (c.g.c)

AG=CF

=> GB=FB (2 cạnh tương ứng) (5).

=> ^ABG=^CBF (2 góc tương ứng). Lại có:

^ABG+^GBC=^ABC=600. Thay ^ABG=^CBF ta thu được:

^CBF+^GBC=600 => ^GBF=600 (6)

Từ (5) và (6) => ΔGBF là tam giác đều. => ^BGF=600 hay ^BGK=600

K là trung điểm của GF => BK là phân giác ^GBF => ^GBK= ^GBF/2=300

Xét ΔBGK: ^BGK=600, ^GBK=300 => ^BKG=900.

ĐS: ^GBK=300, ^BGK=600, ^BKG=900.

28 tháng 10 2017

A B C G E K D F

Trên tia đối của KG lấy điểm F sao cho KG=KF.

Ta có: \(\Delta\)ABC đều => ^A=600. Xét \(\Delta\)ADE có: ^A=600, AD=AE

=> \(\Delta\)ADE đều. Mà G là trọng tâm của \(\Delta\)ADE

=> G cũng là giao của 3 đường trung trực trong \(\Delta\)ABC 

=> DG=AG (T/c đường trung trực) (1)

Xét \(\Delta\)GDK và \(\Delta\)FCK:

KD=KC

^DKG=^CKF              => \(\Delta\)GDK=\(\Delta\)FCK (c.g.c)

KG=KF

=> DG=CF (2 cạnh tương ứng). (2)

Từ (1) và (2) => AG=CF.

Cũng suy ra đc: ^GDK=^FCK (2 góc tương ứng) => ^GDE+^EDK=^FCB+^BCK

Lại có: ED//BC (Vì \(\Delta\)ADE đều) => ^EDK=^BCK (So le trong)

=> ^GDE=^FCB (Bớt 2 vế cho ^EDK, ^BCK) (3)

Xét \(\Delta\)ADE: Đều, G trọng tâm => DG cũng là phân giác ^ADE

=> ^GDE=^ADE/2=300

Tương tự tính được: ^GAD=300 => ^GDE=^GAD hay ^GDE=^GAB (4)

Từ (3) và (4) => ^GAB=^FCB

Xét \(\Delta\)AGB và \(\Delta\)CFB có:

AB=CB

^GAB=^CFB           => \(\Delta\)AGB=\(\Delta\)CFB (c.g.c)

AG=CF

=> GB=FB (2 cạnh tương ứng) (5).

=> ^ABG=^CBF (2 góc tương ứng). Lại có:

^ABG+^GBC=^ABC=600. Thay ^ABG=^CBF ta thu được:

^CBF+^GBC=600 => ^GBF=600 (6)

Từ (5) và (6) => \(\Delta\)GBF là tam giác đều. => ^BGF=600 hay ^BGK=600

K là trung điểm của GF => BK là phân giác ^GBF => ^GBK= ^GBF/2=300

Xét \(\Delta\)BGK: ^BGK=600, ^GBK=300 => ^BKG=900.

ĐS: ^GBK=300, ^BGK=600, ^BKG=900.

*Xong*

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE

b: Ta có: ΔABC=ΔADE

nên BC=DE(1)

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên AM=BC/2(2)

Ta có: ΔADE vuông tại A

mà AN là đường trung tuyến

nên AN=DE/2(3)

Từ (1), (2) và (3) suy ra AM=AN

 1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc...
Đọc tiếp

 

1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.

2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.

3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN

4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.

5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3

0
30 tháng 1 2020

Một đội xe tải trong 3 ngày phải chuyển hết một số hàng hóa 2 ngày đầu độc chất thải đã chuyển được 13,14 số hàng hóa biết rằng ngày thứ hai đội chuyển được 3/7 số hàng hóa vận chuyển ít hơn ngày thứ nhất 30 tấn hỏi ngày thứ ba đôi chân bao nhiêu hàng hóa

30 tháng 1 2020

Gọi E, D lần lượt là trung điểm AB, AC, ta có I, E, D thẳng hàng
MN cắt BD tại J, hạ CH vuông góc ED tại H
Có DH=DC2=ED2DH=DC2=ED2
=>EDEH=23EDEH=23
Có BGBD=BGBJ.BJBDBGBD=BGBJ.BJBD
=23.BNBC=EDEH.EIED=23.BNBC=EDEH.EIED
=>BGBD=EIEHBGBD=EIEH
<=>BGEI=BDEHBGEI=BDEH (1)
Ta có △CBD∼△CEH△CBD∼△CEH (g, g)
=>CBCE=BDEH=BGEICBCE=BDEH=BGEI
=>△CBG∼△CEI△CBG∼△CEI (c, g, c) (2)
(2) =>ˆBCG=ˆECIBCG^=ECI^
<=>ˆBCG+ˆGCE=ˆGCE+ˆECIBCG^+GCE^=GCE^+ECI^
<=>ˆBCE=ˆGCIBCE^=GCI^ (3)
(2) =>BCEC=GCICBCEC=GCIC (4)
từ (3, 4) =>△BEC∼△GIC△BEC∼△GIC (c, g, c)
=>ˆI=90∘I^=90∘, ˆG=60∘G^=60∘ (đpcm)

Hình gửi kèm

  • Gọi G là trọng tâm tam giác BMN và I là trung điểm của AN. Tính các góc của tam giác GIC.png
14 tháng 1 2018

Vẽ H sao cho I là trung điểm GH rồi chứng minh rằng tam giác GHB là tam giác đều bằng cách chứng minh tam giác HCB =tam giác GAB(c.g.c)