CMR:\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{64}>4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=\(\frac{1}{2}\) - \(\frac{1}{4}\) + \(\frac{1}{8}\) - \(\frac{1}{16}\) + \(\frac{1}{32}\) - \(\frac{1}{64}\)
=> 2A= 1-\(\frac{1}{2}\) + \(\frac{1}{4}\) - \(\frac{1}{8}\) + \(\frac{1}{16}\) - \(\frac{1}{32}\)
=> 3A= 1 - \(\frac{1}{64}\) <1 => A<1:3 => A<\(\frac{1}{3}\) => đpcm.
\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
\(=\frac{2}{4}-\frac{1}{4}+\frac{2}{16}-\frac{1}{16}+\frac{2}{64}-\frac{1}{64}\)
\(=\frac{1}{2}+\frac{1}{16}+\frac{1}{64}\)
=37/64
Bạn ghi sai đề rồi nhé Biểu thức trên phải lớn hơn 1/3 chứ
Đặt \(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
\(A=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)
\(2A=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)
\(2A+A=\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)
\(3A=1-\frac{1}{2^6}\)
\(3A=\frac{2^6-1}{2^6}\)
\(A=\frac{\frac{2^6-1}{2^6}}{3}< \frac{1}{3}\)
Vậy \(A< 3\)
Chúc bạn học tốt ~
đặt A bằng dãy trên
quy đồng mẫu số vs mẫu chung là 64. Ta có A=21/64<21/63=1/3
Ta có:\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..........+\frac{1}{64}\)
=\(1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+.........+\left(\frac{1}{33}+......+\frac{1}{64}\right)\)
\(>1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\right)+...+\left(\frac{1}{64}+\frac{1}{64}+.........+\frac{1}{64}\right)\)
=\(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)
=4
Vậy \(1+\frac{1}{2}+\frac{1}{3}+.........+\frac{1}{64}>4\)
- Đặt \(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{64}\)
- Ta có: \(A=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+...+\left(\frac{1}{33}+\frac{1}{34}+...+\frac{1}{64}\right)\)
\(\Rightarrow A>1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\right)+...+\left(\frac{1}{64}+\frac{1}{64}+...+\frac{1}{64}\right)\)
\(\Leftrightarrow A>1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)
\(\Leftrightarrow A>4\)\(\left(ĐPCM\right)\)