K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2020

Ta nhận thấy : \(\frac{1}{n^2\left(n+1\right)^2}< \frac{2n+1}{n^2\left(n+1\right)^2}=\frac{1}{n^2}-\frac{1}{\left(n+1\right)^2}\forall n>1,n\in N\)

Sửa đề nha : 1/4+1/36+... mới làm đc

\(\frac{1}{4}< 1-\frac{1}{4}\)

\(\frac{1}{36}< \frac{1}{4}-\frac{1}{9}\)

...Cộng hết lại đc

\(VT< 1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{1}{n^2}-\frac{1}{\left(n+1\right)^2}\)\(\).Ta có N>1 nên

Hình như ko đc...Xem lại đề

10 tháng 3 2020

Chứng minh: \(\frac{1}{n^2+\left(n+1\right)^2}< \frac{1}{2n\left(n+1\right)}\)

Ta có: \(\frac{1}{n^2+\left(n+1\right)^2}=\frac{1}{n^2+n^2+2n+1}=\frac{1}{2n^2+2n+1}\)

\(\Rightarrow\frac{1}{2n^2+2n+1}< \frac{1}{2n^2+2n}=\frac{1}{2n\left(n+1\right)}\)

Thay vào bài toán:

\(\frac{1}{5}+\frac{1}{13}+...+\frac{1}{n^2+\left(n+1\right)^2}=\frac{1}{1^2+\left(1+1\right)^2}+\frac{1}{2^2+\left(2+1\right)^2}+...+\frac{1}{n^2+\left(n+1\right)^2}< \frac{1}{2.1.2}+\frac{1}{2.2.3}+...+\frac{1}{2n+\left(n+1\right)}\)

\(=\frac{1}{2}.\left[\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n.\left(n+1\right)}\right]\)

\(=\frac{1}{2}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n-1}\right)\)

\(=\frac{1}{2}-\frac{1}{2\left(n+1\right)}< \frac{1}{2}\left(đpcm\right)\)

14 tháng 8 2021

A nguyên <=> 3  ⋮ n - 2

=> n - 2 thuộc Ư(3)

=> n - 2 thuộc {-1;1;-3;3}

=> n thuộc {1;3;-1;5}

B nguyên <=> n ⋮ n + 1

=> n + 1 - 1 ⋮ n + 1

=> 1 ⋮ n + 1

=> như a

14 tháng 8 2021

ĐK : \(n\ne2\)

\(A=\frac{3}{n-2}\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

n - 21-13-3
n315-1

ĐK : \(n\ne-1\)

\(B=\frac{n}{n+1}=\frac{n+1-1}{n+1}=1-\frac{1}{n+1}\)

\(\Rightarrow n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)

n + 11-1
n0-2
24 tháng 11 2015

-4 thuộc N (sai)

4 thuộc N (đúng)

0 thuộc N (đúng)

-1 thuộc N (sai)

1 thuộc N (đúng)

11 tháng 7 2018

a, \(n^2+n=n\left(n+1\right)\)

Vì n(n+1) là tích 2 số tự nhiên liên tiếp nên \(n\left(n+1\right)⋮2\)

Vậy ...

b, \(a^2b+b^2a=ab\left(a+b\right)\)

Nếu a chẵn, b lẻ thì \(ab\left(a+b\right)⋮2\)

Nếu a lẻ, b chẵn thì \(ab\left(a+b\right)⋮2\)

Nếu a,b cùng chẵn thì \(ab⋮2\Rightarrow ab\left(a+b\right)⋮2\)

Nếu a,b cùng lẻ thì \(a+b⋮2\Rightarrow ab\left(a+b\right)⋮2\)

c, \(51^n+47^{102}=\overline{...1}+47^{100}.47^2=\overline{...1}+\left(47^4\right)^{25}.47^2=\overline{...1}+\overline{...1}^{25}\cdot.\overline{...9}=\overline{...1}+\overline{...9}=\overline{...0}⋮10\)

21 tháng 1 2016

n-6 chia hết cho n-1

=>n-1-5 chia hết cho n-1

=>5 chí hết ccho n-1

=>n-1\(\in\)Ư(5)={-1;1;-5;5}

=>n\(\in\){0;2;-4;6}

n-5 chia hết cho n-2

=>n-2-3 chia hết cho n-2

=>3 chia hết cho n-2

=>n-2\(\in\)Ư(3)={-1;1;-3;3}

=>n\(\in\){1;3;-1;5}

21 tháng 1 2016

(n - 6) = (n - 1) - 5

Ta có: (n - 1) - 5 chia hết cho (n - 1) =>  5 chia hết cho (n - 1) => (n - 1) E Ư(5)

Phần còn lại bn tự làm nha