K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2020

\(\frac{x+2}{x+3}-\frac{x+1}{x-1}=\frac{4}{\left(x-1\right)\left(x+3\right)}\left(x\ne-3;x\ne1\right)\)

\(\Leftrightarrow\frac{x+2}{x+3}-\frac{x+1}{x-1}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}-\frac{\left(x+1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{x^2+x-2}{\left(x+3\right)\left(x-1\right)}-\frac{x^2+4x+3}{\left(x-1\right)\left(x+3\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{x^2+x-2-x^2-4x-3-4}{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{-3x-9}{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{-3\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{-3}{x-1}=0\)

=> PT vô nghiệm

10 tháng 3 2020

\(a)\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}=\frac{-3}{4}\left(x\ne-3;x\ne2\right)\)

\(\Leftrightarrow\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{1}{x-2}=\frac{-3}{4}\)

\(\Leftrightarrow\frac{x^2-4}{\left(x-2\right)\left(x+3\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}=\frac{-3}{4}\)

\(\Leftrightarrow\frac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}=\frac{-3}{4}\)

\(\Leftrightarrow\frac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}=\frac{-3}{4}\)

\(\Leftrightarrow\frac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=\frac{-3}{4}\)

\(\Leftrightarrow\frac{x-4}{x-2}=\frac{-3}{4}\)

<=> 4x-16=-3x+6

<=> 4x-16+3x-6=0

<=> 7x-22=0

<=> 7x=22

<=> \(x=\frac{22}{7}\)(TMĐK)
 

c) Ta có: \(\left\{{}\begin{matrix}\dfrac{x+2}{x+1}+\dfrac{2}{y-2}=6\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}+\dfrac{2}{y-2}=5\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x+1}+\dfrac{10}{y-2}=25\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{11}{y-2}=22\\\dfrac{1}{x+1}+\dfrac{2}{y-2}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-2=\dfrac{1}{2}\\\dfrac{1}{x+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=1\\y-2=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{5}{2}\end{matrix}\right.\)

10 tháng 3 2020

a,\(\left(3x-2\right)\left(x+6\right)\left(x^2+5\right)=0\)

Ta có: \(x^2+5\ge0\) (vô lí)

\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-6\end{cases}}\)

Vậy ....

c, \(4x^2\left(x-1\right)-x+1=0\)

\(\Leftrightarrow4x^3-4x^2-x+1=0\)

\(\Leftrightarrow4x^2\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(4x^2-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4x^2-1=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}4x^2=1\\x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2=\frac{1}{4}\\x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm\frac{1}{2}\\x=1\end{cases}}\)

Vậy ....

10 tháng 3 2020

\(\frac{x+2}{x+3}-\frac{x+1}{x-1}=\frac{4}{\left(x-1\right)\left(x+3\right)}\)

ĐKXĐ: \(x\ne1,x\ne-3\)

PT đã cho \(\Leftrightarrow\frac{\left(x+2\right).\left(x-1\right)-\left(x+1\right).\left(x+3\right)}{\left(x+3\right).\left(x-1\right)}=\frac{4}{\left(x-1\right)\left(x+3\right)}\)

\(\Leftrightarrow\frac{\left(x+2\right).\left(x-1\right)-\left(x+1\right).\left(x+3\right)}{\left(x+3\right).\left(x-1\right)}=\frac{4}{\left(x-1\right)\left(x+3\right)}\)

\(\Rightarrow x^2+x-2-x^2-4x-3=4\Leftrightarrow3x=-1\Leftrightarrow x=\frac{-1}{3}\)

10 tháng 12 2019

\(4\left(x+1\right)^2=\sqrt{2\left(x^4+x^2+1\right)}\)

\(\Leftrightarrow16\left(x+1\right)^4=2\left(x^4+x^2+1\right)\)

\(\Leftrightarrow\left(x^2+3x+1\right)\left(7x^2+11x+7\right)=0\)

10 tháng 12 2019

\(\sqrt{\frac{x+56}{16}+\sqrt{x-8}}=\frac{x}{8}\)

\(\Leftrightarrow2\sqrt{x+56+16\sqrt{x-8}}=x\)

\(\Leftrightarrow2\sqrt{\left(\sqrt{x-8}+8\right)^2}=x\)

\(\Leftrightarrow2\sqrt{x-8}+16=x\)

\(\Leftrightarrow x=24\)

3 tháng 4 2017

Bạn chú ý cách viết phương trình.

Phương trình chỉ có dạng f(x)=g(x) thôi, không có dạng A=f(x)=g(x) như bạn viết.

\(VT=\left[8\left(x+\frac{1}{x}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2\right]+4\left(x^2+\frac{1}{x^2}\right)^2\)

\(=4\left(x+\frac{1}{x}\right)^2\left(2-x^2-\frac{1}{x^2}\right)+4\left(x^2+\frac{1}{x^2}\right)^2\)

\(=-4\left(x+\frac{1}{x}\right)^2\left(x-\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2\)

\(=-4\left(x^2-\frac{1}{x^2}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2\)

\(=-4x^4+8-\frac{4}{x^4}+4x^4+8+\frac{4}{x^4}\)

\(=16\)

Phương trình đã cho trở thành

\(\left(x+4\right)^2=16\\ \Leftrightarrow\orbr{\begin{cases}x+4=-4\\x+4=4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-8\\x=0\end{cases}}\)

4 tháng 3 2016

\(ĐKXĐ:\)  \(x\ne0\)

Đặt  \(x+\frac{1}{x}=y\)  \(\left(\text{*}\right)\), thì khi đó  \(x^2+\frac{1}{x^2}=y^2-2\)  

Do đó,  \(y^2-2-\frac{9}{2}y+7=0\)

\(\Leftrightarrow\)  \(y^2-\frac{9}{2}y+5=0\)

\(\Leftrightarrow\)  \(2y^2-9y+10=0\)

\(\Leftrightarrow\)  \(2y^2-4y-5y+10=0\)

\(\Leftrightarrow\)  \(2y\left(y-2\right)-5\left(y-2\right)=0\)

\(\Leftrightarrow\)  \(\left(y-2\right)\left(2y-5\right)=0\)

\(\Leftrightarrow\)  \(^{y-2=0}_{2y-5=0}\)  \(\Leftrightarrow\)  \(^{y=2}_{y=\frac{5}{2}}\)  

\(\text{*)}\)  Với trường hợp  \(y=2\)  thì khi đó, \(\left(\text{*}\right)\)  \(\Rightarrow\)  \(x+\frac{1}{x}=2\)  \(\left(1\right)\)

Vì  \(x\ne0\)  nên từ \(\left(1\right)\)  suy ra  \(x^2+1=2x\)  \(\Leftrightarrow\)  \(x^2-2x+1=0\)  \(\Leftrightarrow\)  \(\left(x-1\right)^2=0\)  \(\Leftrightarrow\)  \(x-1=0\)  \(\Leftrightarrow\)  \(x=1\)  ( thỏa mãn điều kiện xác định)   

 \(\text{*)}\)  Với  \(y=\frac{5}{2}\)  thì \(\left(\text{*}\right)\)  \(\Rightarrow\)  \(x+\frac{1}{x}=\frac{5}{2}\)  \(\left(2\right)\)

Từ  \(\left(2\right)\)  \(\Rightarrow\)  \(2x^2+2=5x\)  (do  \(x\ne0\) )

               \(\Leftrightarrow\)  \(2x^2-5x+2=0\)

               \(\Leftrightarrow\)  \(2x^2-4x-x+2=0\)

               \(\Leftrightarrow\)  \(2x\left(x-2\right)-\left(x-2\right)=0\)

               \(\Leftrightarrow\)  \(\left(x-2\right)\left(2x-1\right)=0\)

               \(\Leftrightarrow\)  \(^{x-2=0}_{2x-1=0}\)  \(\Leftrightarrow\)  \(^{x=2}_{x=\frac{1}{2}}\)  (t/mãn điều kiện xác định)

Vậy,  \(S=\left\{1;2;\frac{1}{2}\right\}\)

11 tháng 12 2016

a) \(\frac{x-1}{x+1}-\frac{x+1}{x-1}+\frac{4}{x^2-1}\left(ĐK:x\ne\pm1\right)\)

\(=\frac{\left(x-1\right)^2-\left(x+1\right)^2+4}{\left(x-1\right)\left(x+1\right)}\)

\(\frac{x^2-2x+1-x^2-2x-1+4}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{-4x+4}{\left(x-1\right)\left(x+1\right)}=\frac{-4\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=-\frac{4}{x+1}\)

b) \(\frac{x^3y+xy^3}{x^4y}:\left(x^2+y^2\right)\left(ĐK:x,y\ne0\right)\)

\(=\frac{xy\left(x^2+y^2\right)}{x^4y}\cdot\frac{1}{x^2+y^2}\)

\(=\frac{1}{x^3}\)

18 tháng 7 2021

a) \(\hept{\begin{cases}3\left(x+1\right)+2\left(x+2y\right)=4\\4\left(x+1\right)-\left(x+2y\right)=9\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(x+1\right)+2\left(x+2y\right)=4\\8\left(x+1\right)-2\left(x+2y\right)=18\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}11\left(x+1\right)=22\\3\left(x+1\right)+2\left(x+2y\right)=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\4y+8=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}\)

18 tháng 7 2021

b) ĐK : y khác 0

\(\hept{\begin{cases}x+\frac{1}{y}=-\frac{1}{2}\\2x-\frac{3}{y}=-\frac{7}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}3x+\frac{3}{y}=-\frac{3}{2}\\2x-\frac{3}{y}=-\frac{7}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}5x=-5\\3x+\frac{3}{y}=-\frac{3}{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-1\\-3+\frac{3}{y}=-\frac{3}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\\frac{3}{y}=\frac{3}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\left(tm\right)\end{cases}}\)