Giải phương trình nghiệm nguyên: \(1+x^{ }+x^2+...+x^{2008}=y^{2008}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
4 tháng 12 2016
\(x-2008=X;y-2009=Y;z-2010=Z\)
\(\sqrt{X}+\sqrt{Y}+\sqrt{Z}+3012=\frac{1}{2}\left(X+Y+Z+2008+2009+2010\right)\)
\(2.\sqrt{X}+2\sqrt{Y}+2\sqrt{Z}+2.3012=X+Y+Z+2009\cdot3\)
\(\left(X-2\sqrt{X}+1\right)+\left(Y-2\sqrt{Y}+1\right)+\left(Z-2\sqrt{Z}+1\right)+3.2008=2.3012\)
\(\left(\sqrt{X}-1\right)^2+\left(\sqrt{Y}-1\right)^2+\left(\sqrt{Z}-1\right)^2=2.3012-3.2008=0\)
\(X=1;Y=1;Z=1\Rightarrow x=2009;y=2010;z=2011\)
BT
9 tháng 3 2017
Ta có: y=\(\frac{2008-1003x}{2}\)
Để y nguyên dương => 2008-1003.x\(\ge\)0 => x\(\le\)2 và 2008-1003.x) phải là số chẵn => x là số chẵn
=> x={0; 2} => y=(1004; 1)
=> A=x2+y2 = 02+10042=10042
A=x2+y2 = 12+12=2
ĐS: A=2; A=10042
I
1
CA
0
DD
0