1 người đi từ A đến B với vận tốc trung bình 20km/h. Lúc quay trở về A, người đó đi con đường dài khác hơn đường trước 10km nhưng đi với vận tốc lớn hơn vận tốc lúc đi là 6km/h. Vì vậy thời gian về vẫn ít hơn thời gian đi là 1 giờ. Tính chiều dài của con đường người đó đã đi từ A đến B.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian người đó đi từ A đến B là t (h)
=>Thời gain đi về là t-1 (h)
Ta có:
26.(t - 1) - 20.t = 10
<=> 26.t - 26 - 20.t = 10
<=> 6.t = 36
<=> t = 6 (h)
Quãng đường từ A đến B dài:
20.6 = 120 (km)
Vậy......
Gọi độ dài quãng đường lúc đi là x (km) với x>0
Độ dài quãng đường lúc về là: \(x+6\) (km)
Thời gian đi của người đó: \(\dfrac{x}{25}\) giờ
Thời gian về của người đó: \(\dfrac{x+6}{30}\) giờ
Do thời gian về ít hơn thời gian đi là \(10\) phút \(=\dfrac{1}{6}\) giờ nên ta có pt:
\(\dfrac{x}{25}-\dfrac{x+6}{30}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{x}{150}=\dfrac{11}{30}\)
\(\Leftrightarrow x=55\left(km\right)\)
S (km) | v (km/giờ) | t (giờ) | |
A→B | x | 25km/giờ | \(\dfrac{x}{25}\) |
Quãng đường khác | x+6 | 30km/giờ | \(\dfrac{x+6}{30}\) |
Theo đầu bài ta có phương trình:
\(\dfrac{x}{25}-\dfrac{x+6}{30}=\dfrac{1}{6}\)
\(\Leftrightarrow x=55\left(km\right)\)
Vậy quãng đường lúc đi là 55km
Gọi quãng đường AB là x ( x > 0 )
Theo bài ra ta có pt \(\dfrac{30}{x}-\dfrac{36}{x+21}=\dfrac{15}{60}=\dfrac{1}{4}\Rightarrow x\approx32,5km\)
Gọi chiều dài con đường lúc đi là x ( km, x > 0 )
Gọi chiều dài quãng đường lúc về là x + 15 ( km )
Thời gian đi quãng đường lúc đầu là: \(\frac{x+15}{20}\left(h\right)\)
Ta có phương trình:
\(\frac{x}{15}+\frac{x+15}{20}=9,5\)
\(\Leftrightarrow\frac{4x}{60}+\frac{3x+45}{60}=\frac{570}{60}\)
\(\Leftrightarrow4x+3x+45=570\)
\(\Leftrightarrow4x+3x+45-570=0\)
\(\Leftrightarrow7x-525=0\)
\(\Leftrightarrow7x=525\)
\(\Leftrightarrow x=525:7=75\)( thỏa mãn )
Vậy chiều dài quãng đường lúc đi là 75 km
\(\)
Gọi vận tốc dự định đi là x (km/h) và thời gian dự định đi là b (h)
ĐK: x,b > 0
Theo đề bài, ta có:
\(\dfrac{60}{x}-\dfrac{60}{x+5}=1\)
\(\Leftrightarrow\) \(60\left(x+5\right)-60x=x\left(x+5\right)\)
\(\Leftrightarrow x^2+5x-300=0\)
\(\Leftrightarrow\left(x-15\right)\left(x+20\right)=0\)
\(\Leftrightarrow x=15\)
=> vận tốc dự định là 15 km/h
Thời gian dự định đi là: \(\dfrac{60}{15}=4\left(h\right)\)
30 phút=\(\dfrac{1}{2}\)giờ
Gọi thời gian lúc đi là x(giờ; x>0)
Vì thời gian lúc đi ít hơn thời gian lúc về là 30 phút(\(\dfrac{1}{2}\)giờ)
=>Thời gian lúc về là:x+\(\dfrac{1}{2}\)(giờ)
Vận tốc của người đó lúc về nhỏ hơn vận tốc lúc đi là 6km/h
=>Vận tốc của người đó lúc về là:30-6=24(km/h)
Quãng đường lúc đi: 30x(km)
Quãng đường lúc về là: 24(x+\(\dfrac{1}{2}\))
Quãng đường đi được là không đổi nên ta có phương trình:
30x=24(x+\(\dfrac{1}{2}\))
\(\Leftrightarrow\)30x=24x+12
\(\Leftrightarrow\)30x-24x=12
\(\Leftrightarrow\)6x=12
\(\Leftrightarrow\)x=2(TMĐK)
Vậy quãng đường AB dài: 30.2=60km
Gọi độ dài quãng đường AB là x (km; x > 0)
Vận tốc đi từ B trở về A là: 24 + 6 = 30 (km/h)
Thời gian người đó đi từ A đến B là:
x/24 (h)
Thời gian người đó đi từ B về A là:
x/30 (h)
Đổi 30 phút = 1/2h
vì thời gian về ít hơn thời gian đi 1/2 h nên ta có phương trình:
x/24 - x/30 = 1/2
<=> 30x/720 - 24x/720 = 360/720
<=> 30x - 24x = 360
<=> 6x = 360
<=> x = 360 : 6
<=> x = 60 (TM)
Vậy.....