Bài 1: Giải và biện luận bất phương trình sau:
a) mx + 6 < 2x + 3m
b) (m2 + 9)x + 3 \(\ge\) m(1 - 6x)
c) m(m2x +2) < x + m2 + 1
Bài 2: Tìm m để bất phương trình vô nghiệm:
(m2 - m)x + m < 6x - 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2 bạn ghi thiếu đề
Câu 1:
\(\Leftrightarrow\left(m^2-3m\right)x+2x< 2-m\)
\(\Leftrightarrow\left(m^2-3m+2\right)x< 2-m\)
BPT đã cho vô nghiệm khi và chỉ khi:
\(\left\{{}\begin{matrix}m^2-3m+2=0\\2-m\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\\m\ge2\end{matrix}\right.\) \(\Rightarrow m=2\)
3:
x^2-2x+1-m^2<=0
=>(x-1)^2-m^2<=0
=>(x-1)^2<=m^2
=>-m<=x-1<=m
=>-m+1<=x<=m+1
mà x thuộc [-1;2]
nên -m+1>=-1 và m+1<=2
=>-m>=-2 và m<=1
=>m<=2 và m<=1
=>m<=1
Chọn A.
Bất phương trình ( m 2 + m + 1)x - 5m ≥ ( m 2 + 2)x - 3m - 1 ⇔ (m - 1)x ≥ 2m - 1 vô nghiệm khi
Chọn A.
Bất phương trình ( m 2 + m + 1)x - 5m ≥ ( m 2 + 2)x - 3m - 1 ⇔ (m - 1)x ≥ 2m - 1 vô nghiệm khi
Bất phương trình tương đương: ( m 2 − 3 m + 2 ) x < 2 − m
Nếu m 2 − 3 m + 2 ≠ 0 ⇔ m ≠ 1 m ≠ 2 bất phương trình luôn có nghiệm.
Với m = 1 , bất phương trình trở thành 0 x < 1 (luôn đúng) nên bất phương trình có nghiệm đúng với mọi x ∈ ℝ .
Với m = 2 , bất phương trình ở thành 0 x < 0 (vô lí) nên bất phương trình vô nghiệm
Chọn đáp án C.