K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2019

\(\left\{{}\begin{matrix}\frac{2y-5x}{3}+5=\frac{y+27}{4}-2x\\\frac{x+1}{3}+y=\frac{6y-5x}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\frac{2y-5x}{3}+5+2x=\frac{y+27}{4}\\\frac{x+1}{3}+y=\frac{6y-5x}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\frac{2y+x+15}{3}=\frac{y+27}{4}\\\frac{x+3y+1}{3}=\frac{6y-5x}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}8y+4x+60=3y+81\\7x+21y+7=18y-15x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x+5y=21\\22x+3y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+5y=21\\66x+9y=-21\end{matrix}\right.\Leftrightarrow70x+14y=0\Leftrightarrow5x+y=0\Leftrightarrow20x+4y=0;4x+5y=21\Leftrightarrow20x+25y=105\Leftrightarrow\left(20x+25y\right)-\left(20x+4y\right)=105\Leftrightarrow21y=105\Leftrightarrow y=5.\text{Thay vào ta được:}4x+25=21\Leftrightarrow4x=-4\Leftrightarrow x=-1\)

\(\text{Thử lại ta thấy thỏa mãn: Vậy: x=-1;y=5}\)

NV
25 tháng 4 2019

\(\left\{{}\begin{matrix}\frac{2}{3}y-\frac{5}{3}x-\frac{1}{4}y+2x=\frac{27}{4}-5\\\frac{1}{3}x+\frac{5}{7}x+y-\frac{6}{7}y=-\frac{1}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\frac{1}{3}x+\frac{5}{12}y=\frac{7}{4}\\\frac{22}{21}x+\frac{1}{7}y=-\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=5\end{matrix}\right.\)

8 tháng 3 2020

frac

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{3}y-\dfrac{5}{3}x+5-\dfrac{1}{4}y-\dfrac{27}{4}+2x=0\\\dfrac{1}{3}x+\dfrac{1}{3}+y-\dfrac{6}{7}y+\dfrac{5}{7}x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{3}x+\dfrac{1}{28}y=-5\\\dfrac{22}{21}x+\dfrac{1}{7}y=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}28x+3y=-420\\88x+12y=-28\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}112x+12y=-420\\88x+12y=-28\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}24x=-392\\28x+3y=-420\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{49}{3}\\y=\dfrac{112}{9}\end{matrix}\right.\)

11 tháng 2 2020

a) Xem lại đề

b) \(\left\{{}\begin{matrix}5x-3y=5\\2x+5y=33\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-3y=5\\x=\frac{33-5y}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5.\frac{33-5y}{2}-3y=5\\x=\frac{33-5y}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}165-25y-6y=10\\x=\frac{33-5y}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}31y=155\\x=\frac{33-5y}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=\frac{33-5.5}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=4\end{matrix}\right.\)

11 tháng 2 2020

c)\(\left\{{}\begin{matrix}\frac{x}{2}-\frac{y}{3}=0\\5x+y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=13-5x\\\frac{x}{2}-\frac{13-5x}{3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=13-5x\\\frac{3x-26+10x}{6}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=13-5x\\13x=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=13-5x\\x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=13-5.2\\x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=2\end{matrix}\right.\)

NV
10 tháng 7 2019

1/ ĐKXĐ:...

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{x}+\frac{3}{y-2}=4\\\frac{12}{x}+\frac{3}{y-2}=3\end{matrix}\right.\) \(\Rightarrow\frac{10}{x}=-1\Rightarrow x=-10\)

\(\frac{4}{-10}+\frac{1}{y-2}=1\Rightarrow\frac{1}{y-2}=\frac{7}{5}\Rightarrow y-2=\frac{5}{7}\Rightarrow y=\frac{19}{7}\)

2/ ĐKXĐ:...

Đặt \(\left\{{}\begin{matrix}\frac{1}{2x-y}=a\\\frac{1}{x+y}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2a-b=0\\3a-6b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{9}\\b=\frac{2}{9}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{2x-y}=\frac{1}{9}\\\frac{1}{x+y}=\frac{2}{9}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x-y=9\\x+y=\frac{9}{2}\end{matrix}\right.\) \(\Rightarrow...\)

3/ \(\Leftrightarrow\left\{{}\begin{matrix}5x+10y=3x-1\\2x+4=3x-6y-15\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+10y=-1\\-x+6y=-19\end{matrix}\right.\) \(\Rightarrow...\)

4/ Bạn tự giải

NV
19 tháng 6 2020

b/ ĐKXĐ: ...

\(2x^3-2y^3+5x-5y=0\)

\(\Leftrightarrow\left(x-y\right)\left(2x^2+2xy+2y^2\right)+5\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(2x^2+2xy+2y^2+5\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left[\left(x+y\right)^2+x^2+y^2+5\right]=0\)

\(\Leftrightarrow x=y\) (ngoặc sau luôn dương)

Thế vào pt dưới:

\(\frac{3x}{x^2+x+1}+\frac{5x}{x^2+3x+1}=2\)

Nhận thấy \(x=0\) ko phải nghiệm, pt tương đương:

\(\frac{3}{x+\frac{1}{x}+1}+\frac{5}{x+\frac{1}{x}+3}=2\)

Đặt \(x+\frac{1}{x}+1=t\)

\(\Rightarrow\frac{3}{t}+\frac{5}{t+2}=2\Leftrightarrow3\left(t+2\right)+5t=2t\left(t+2\right)\)

\(\Leftrightarrow2t^2-4t-6=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}+1=-1\\x+\frac{1}{x}+1=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+1=0\\x^2-2x+1=0\end{matrix}\right.\) \(\Leftrightarrow...\)

NV
19 tháng 6 2020

a/ ĐKXĐ: ...

\(2x-\frac{1}{y}=2y-\frac{1}{x}\Leftrightarrow\frac{2xy-1}{y}=\frac{2xy-1}{x}\)

\(\Rightarrow\left[{}\begin{matrix}x=y\\2xy-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=y\\xy=\frac{1}{2}\end{matrix}\right.\)

TH1: \(x=y\Rightarrow6x^2=7x^2-8\Rightarrow x^2=8\Rightarrow...\)

TH2: \(xy=\frac{1}{2}\Rightarrow y=\frac{1}{2x}\)

\(\Rightarrow2\left(2x^2+\frac{1}{4x^2}\right)+4\left(x-\frac{1}{2x}\right)=\frac{7}{2}-8\)

\(\Leftrightarrow4\left(x^2+\frac{1}{4x^2}\right)+8\left(x-\frac{1}{2x}\right)+9+4x^2=0\)

Đặt \(x-\frac{1}{2x}=t\Rightarrow x^2+\frac{1}{4x^2}=t^2+1\)

\(\Rightarrow4\left(t^2+1\right)+8t+9+4x^2=0\)

\(\Leftrightarrow4\left(t+1\right)^2+4x^2+9=0\)

Vế trái luôn dương nên pt vô nghiệm

25 tháng 1 2020

\(2,\left\{{}\begin{matrix}x^3-2x^2y-15x=6y\left(2x-5-4y\right)\left(1\right)\\\frac{x^2}{8y}+\frac{2x}{3}=\sqrt{\frac{x^3}{3y}+\frac{x^2}{4}}-\frac{y}{2}\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left(2y-x\right)\left(x^2-12y-15\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}2y=x\\y=\frac{x^2-15}{12}\end{matrix}\right.\)

Ta xét các trường hợp sau:

Trường hợp 1:

\(y=\frac{x^2-15}{12}\) thay vào phương trình \(\left(2\right)\) ta được:

\(\frac{3x^2}{2\left(x^2-15\right)}+\frac{2x}{3}=\sqrt{\frac{4x^3}{x^2-15}+\frac{x^2}{4}}-\frac{x^2-15}{24}\)

\(\Leftrightarrow\frac{36x^2}{x^2-15}-12\sqrt{\frac{x^2}{x^2-15}\left(x^2+16x-15\right)}+\left(x^2+16x-15\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\6\sqrt{\frac{x^2}{x^2-15}}=\sqrt{\left(x^2+16x-15\right)}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\36\frac{x^2}{x^2-15}=x^2+16x-15\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\36x^2=\left(x^2-15\right)\left(x^2+16x-15\right)\left(3\right)\end{matrix}\right.\)

Ta xét phương trình \(\left(3\right):36x^2=\left(x^2-15\right)\left(x^2+16x-15\right)\)

Vì: \(x=0\) Không phải là nghiệm. Ta chia cả hai vế p.trình cho \(x^2\) ta được:

\(36=\left(x-\frac{15}{x}\right)\left(x+16-\frac{15}{x}\right)\)

Đặt: \(x-\frac{15}{x}=t\Rightarrow t^2+16t-36=0\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-18\end{matrix}\right.\)

+ Nếu như:

\(t=2\Leftrightarrow x-\frac{15}{x}=2\Leftrightarrow x^2-2x-15=0\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)\(\Leftrightarrow x=5\)

+ Nếu như:

\(t=-18\Leftrightarrow x-\frac{15}{x}=-18\Leftrightarrow x^2+18x-15=0\Leftrightarrow\left[{}\begin{matrix}x=-9-4\sqrt{6}\\x=-9+4\sqrt{6}\end{matrix}\right.\Leftrightarrow x=-9-4\sqrt{6}\)

Trường hợp 2:

\(x=2y\) thay vào p.trình \(\left(2\right)\) ta được:

\(\Leftrightarrow\frac{x^2}{4x}+\frac{2x}{3}=\sqrt{\frac{2x^3}{3x}+\frac{x^2}{4}}-\frac{x}{4}\Leftrightarrow\frac{7}{6}x=\sqrt{\frac{11x^2}{12}}\Leftrightarrow x=0\left(ktmđk\right)\)

Vậy nghiệm của hệ đã cho là: \(\left(x,y\right)=\left(5;\frac{5}{6}\right),\left(-9-4\sqrt{6};\frac{27+12\sqrt{6}}{2}\right)\)

25 tháng 1 2020

Năm mới chắc bị lag @@ tớ sửa luôn đề câu 3 nhé :v

3, \(\left\{{}\begin{matrix}8\left(x^2+y^2\right)+4xy+\frac{5}{\left(x+y\right)^2}=13\left(1\right)\\2xy+\frac{1}{x+y}=1\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow8\left[\left(x+y\right)^2-2xy\right]+4xy+\frac{5}{\left(x+y\right)^2}=13\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow8\left(a^2-2b\right)+4b+\frac{5}{a^2}=13\)

\(\Leftrightarrow8a^2-12b+\frac{5}{a^2}=13\)

Ta cũng có \(\left(2\right)\Leftrightarrow2b+\frac{1}{a}=1\)

\(\Leftrightarrow2b=1-\frac{1}{a}\)

Thay vào (1) ta được :

\(8a^2+\frac{5}{a^2}-6\cdot\left(1-\frac{1}{a}\right)=13\)

\(\Leftrightarrow8a^2+\frac{5}{a^2}-6+\frac{6}{a}=13\)

\(\Leftrightarrow8a^2+\frac{5}{a^2}+\frac{6}{a}=19\)

Giải pt được \(a=1\)

Khi đó \(b=\frac{1-\frac{1}{1}}{2}=0\)

Ta có hệ :

\(\left\{{}\begin{matrix}x+y=1\\xy=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\end{matrix}\right.\)

Vậy...