tìm x
5x2-120x-125=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(40x + 125 = 120x + 45\)
\(=> 125-45=120x-40x\)
\(=>80x=80\)
\(=>x=1\)
\(\dfrac{20x^2+120x+180}{\left(3x+5\right)^2-4x^2}+\dfrac{5x^2-25}{9x^2-\left(2x+5\right)^2}-\dfrac{\left(2x+3\right)^2-x^2}{3\left(x^2+8x+15\right)}\)
\(=\dfrac{20\left(x^2+6x+9\right)}{\left(3x+5+2x\right)\left(3x+5-2x\right)}+\dfrac{5\left(x-5\right)\left(x+5\right)}{\left(3x-2x-5\right)\left(3x+2x+5\right)}-\dfrac{\left(2x+3-x\right)\left(2x+3+x\right)}{3\left(x+3\right)\left(x+5\right)}\)
\(=\dfrac{20\left(x+3\right)^2}{5\left(x+1\right)\cdot\left(x+5\right)}+\dfrac{5\left(x-5\right)\left(x+5\right)}{5\left(x+1\right)\left(x-5\right)}-\dfrac{\left(x+3\right)\cdot3\left(x+1\right)}{3\left(x+3\right)\left(x+5\right)}\)
\(=\dfrac{4\left(x+3\right)^2}{\left(x+1\right)\left(x+5\right)}+\dfrac{x+5}{x+1}-\dfrac{x+1}{x+5}\)
\(=\dfrac{4\left(x+3\right)^2+\left(x+5\right)^2-\left(x+1\right)^2}{\left(x+1\right)\left(x+5\right)}\)
\(=\dfrac{4x^2+24x+36+x^2+10x+25-x^2-2x-1}{\left(x+1\right)\cdot\left(x+5\right)}\)
\(=\dfrac{4x^2+32x+60}{\left(x+1\right)\left(x+5\right)}=\dfrac{4\left(x^2+8x+15\right)}{\left(x+1\right)\left(x+5\right)}\)
\(=\dfrac{4\left(x+3\right)\cdot\left(x+5\right)}{\left(x+1\right)\left(x+5\right)}=\dfrac{4x+12}{x+1}\)
5x2-15x=0
5x(x-3) =0
TH1: 5x=0 TH2: x-3=0
=>x=0 => x=3
Vậy x thuộc {0;3}
c) x ∈ Z và x 2 - 5 x 2 - 24 < 0
Ta có: x 2 - 5 > 0 ; x 2 - 24 < 0 ⇒ x 2 > 5 ; x 2 < 24 Nên x 2 ∈ 9 ; 16
x 2 = 9 ⇒ x = ± 3 ; x = 16 ⇒ x = ± 4
Vậy x ∈ - 3 ; 3 ; - 4 ; 4
Tìm x:
a) x3 +3x2 - 10x = 0
b) x3 - 5x2 - 14x =0
c) x3 + 5x2- 24x =0
Giải giúp mình với ạ !
Mình cảm ơn !
x3+3x2-10x=0
=>x(3+3.2-10)=0
=>x=0
x3-5x2-14x=0
=>x(3-5.2-14)=0
=>x=0
x3+5x2-24x=0
=>x(3+5.2-24)=0
=>x=0
Câu a)
\(x^3+3x^2-10=0\Rightarrow x\left(x^2+3x-10\right)=0\Rightarrow x\left(x^2-2x+5x-10\right)=0\Rightarrow x\left(x\left(x-2\right)+5\left(x-2\right)\right)=0\Rightarrow x\left(x+5\right)\left(x-2\right)=0\)
\(\Rightarrow x=0;x=5;x=2\)
Bất phương trình đã cho vô nghiệm khi và chỉ khi 5 x 2 - x + m ≤ 0 nghiệm đúng với mọi x.
⇔ 1 - 20m < 0 ⇔ m > 1/20
Đáp số: m > 1/20
a) \(2x^2-5x^2+6x+13=0\)
\(\Leftrightarrow-3x^2+6x+13=0\)
\(\Leftrightarrow3x^2-6x-13=0\left(1\right)\)
\(\Delta'=9+39=48>0\Rightarrow\sqrt[]{\Delta'}=4\sqrt[]{3}\)
Pt (1) có 2 nghiệm phân biệt là :
\(\left[{}\begin{matrix}x=\dfrac{3+4\sqrt[]{3}}{3}=1+\dfrac{4\sqrt[]{3}}{3}\\x=\dfrac{3-4\sqrt[]{3}}{3}=1-\dfrac{4\sqrt[]{3}}{3}\end{matrix}\right.\)
b) \(x^2-5x=-4\)
\(\Leftrightarrow x^2-5x+4=0\)
\(\Leftrightarrow x^2-x-4x+4=0\)
\(\Leftrightarrow x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)
\(a,x+5x^2=0\\ \Rightarrow a,x\left(1+5x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{5}\end{matrix}\right.\\ b,\left(x+3\right)^2+\left(4+x\right)\left(4-x\right)=0\\ \Rightarrow x^2+6x+9+16-x^2=0\\ \Rightarrow6x+25=0\\ \Rightarrow6x=-25\\ \Rightarrow x=-\dfrac{25}{6}\)
\(c,5x\left(x-1\right)=x-1\\ \Rightarrow c,5x\left(x-1\right)-\left(x-1\right)\\ \Rightarrow\left(x-1\right)\left(5x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ d,x^2-2x-3=0\\ \Rightarrow\left(x^2-3x\right)+\left(x-3\right)=0\\ \Rightarrow x\left(x-3\right)+\left(x-3\right)=0\\ \Rightarrow\left(x+1\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
5x2-120x-125=0
x(5x-120)=0+125
x(5x-120)=125
\(\Rightarrow\orbr{\begin{cases}x=125\\5x-120=125\Rightarrow5x=125-120\Rightarrow5x=5\Rightarrow x=5:5=1\end{cases}}\)
Vậy x=125 hoặc x=1
\(5x^2-120x-125=0\)
\(5\left(x^2-24x-25\right)=0\)
\(5\left(x-25\right)\left(x+1\right)=0\)
\(\Rightarrow5=0\)vô nghiệm
\(\Rightarrow\orbr{\begin{cases}x-25=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=25\\x=-1\end{cases}}}\)