Câu 2: Cho tam giác DEF cân tại D (D<90°). Vẽ EH ⊥DF tại H, FK ⊥DE tại K. Gọi O là giao điểm của EH và FK.
a) Chứng minh rằng △KEF=△HFE, DH =DK
b) Chứng minh rằng DO là tia phân giác của góc EDF .
c)Chứng minh rằng HK//EF
d) Gọi I là trung điểm cạnh EF. Chứng minh rằng D, O, I thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a> ta có : góc E = góc F = 400 ( vì tam giác DEF cân tại D)
Tam giác DEF có : góc D+ góc E + góc F = 1800
góc D + 400 +400 = 1800
\(\Rightarrow\)góc D = 1800 - 400-400= 1000
CẢNH BÁO! Tiếp tục đọc, hoặc linh hồn của bạn sẽ được thực hiện, ngay cả khi bạn đọc từ "cảnh báo"! Có một lần là một người tên là Duke Hunapon. Anh ta lười biếng, và rất bảnh bao. Anh ấy luôn mặc một chiếc áo khoác, không có vấn đề gì ở bên ngoài. Anh ta có một người anh trai tên là Michael, người luôn làm anh ta vây quanh. Một ngày nọ, Michael bị giết, và nó ảnh hưởng rất nhiều đến Duke. Anh ta phát điên và bắt đầu giết người. Chẳng mấy chốc, anh ta đã chiến đấu với ai đó và bị giết. Bây giờ, anh ta đi lang thang xung quanh như một bộ xương cao với một chiếc áo sơ mi màu đỏ, và cùng một chiếc áo hoodie mà Duke đã mặc. Bộ xương này được gọi là "Swapfell Papyrus", và anh ta sẽ giết bạn nếu bạn không đăng bài này trên 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ. Nếu bạn thất bại, và bạn thức dậy khi anh ta ở trong phòng của bạn, cái chết của bạn sẽ chậm và rất đau đớn. Một cô gái tên Lily Lilupanin đọc điều này, và không nghe. Cô bị hãm hiếp và bị giết trong giấc ngủ. Nếu bạn sao chép và dán vào 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ, Swapfell Papyrus sẽ đảm bảo bạn cảm thấy an toàn
Xét ΔDEN vuông tại N và ΔDFM vuông tại M có
DE=DF(ΔDEF cân tại D)
ˆEDNEDN^ chung
Do đó: ΔDEN=ΔDFM(cạnh huyền-góc nhọn)
Suy ra: DN=DM(hai cạnh tương ứng)
Xét ΔDEF có
DMDE=DNDF(DM=DN;DE=DF)DMDE=DNDF(DM=DN;DE=DF)
nên MN//EF(Định lí Ta lét đảo)
Xét tứ giác EMNF có MN//EF(Cmt)
nên EMNF là hình thang
mà ˆMEF=ˆNFEMEF^=NFE^(ΔDEF cân tại D)
nên EMNF là hình thang cân
Lời giải:
a)
Theo định lý tổng 3 góc trong tam giác:
$\widehat{D}+\widehat{E}+\widehat{F}=180^0$
$\Rightarrow \widehat{E}+\widehat{F}=180^0-\widehat{D}=180^0-60^0=120^0$
Mà tam giác $DEF$ cân tại $D$ nên $\widehat{E}=\widehat{F}$
Do đó:
$\widehat{E}=\widehat{F}=\frac{120^0}{2}=60^0$
b)
Xét tam giác $ABM$ và $ACM$ có:
$AB=AC$ (do $ABC$ cân tại $A$)
$\widehat{B}=\widehat{C}$ (do $ABC$ cân tại $A$)
$BM=CM$ (do $M là trung điểm $BC$)
$\Rightarrow \triangle ABM=\triangle ACM$ (c.g.c)
tam giác DEF cân tại D suy ra DE=DF, góc DEF = góc DFE
Xét tam giác KEF và tam giác HFE
có EF chung
góc EKF=góc EHF = 900
góc KEF=góc HFE (CMT)
suy ra tam giác KEF và tam giác HFE (cạnh huyền-góc nhọn)
suy ra EK = HF
mà DK+KE=DE, DH+HF=DF
lại có DE=DF (CMT)
suy ra KD=DH
b) xét tam giác DKO và tam giác DHO
có DO chung
góc DKO = góc DHO = 900
DK = DH (CMT)
suy ra tam giác DKO = tam giác DHO ( cạnh huyền-cạnh góc vuông)
suy ra góc KDO = góc HDO
suy ra DO là tia phân giác của góc EDF (1)
c) Vì DK = DH suy ra tam giác DKH cân tại D
suy ra góc DKH= góc DHK
suy ra góc DKH+ góc DHK + góc KDH = 1800
suy ra góc DKH=(1800 - góc KDH) :2 (2)
Tam giác DEF cân tại D
suy ra góc DEF + góc DFE + góc EDF = 1800
suy ra góc DEF = (1800 - góc KDH) :2 (3)
Từ (2) và (3) suy ra góc DKH = góc DEF
mà góc DKH đồng vị với góc DEF
suy ra KH // EF
d) Xét tam giác DEI và tam giác DFI
có DE = DF (CMT)
DI chung
EI = IF
suy ra tam giác DEI = tam giác DFI (c.c.c)
suy ra góc EDI = góc FDI
suy ra DI là tia phân giác của góc EDF (4)
Từ (1) và (4) suy ra DO trùng DI
hay ba điểm D, O, I thẳng hàng.