Cho tam giác ABC nội tiếp đường tròn (O), đường cao AH. Gọi M là giao điểm của AO với BC, chứng minh rằng: \(\frac{HB}{HC}+\frac{MB}{MC}\ge2.\frac{AB}{AC}\). Dấu "=" xảy ra khi nào?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha
Kẻ đường kính AM của (O) \(\Rightarrow D\in BC\)
\(\widehat{ACM}=90^o;\widehat{ABM}=90^o\)(góc nội tiếp chắn nửa đường tròn)
Ta có: \(\Delta ABH~\Delta AMC\left(g.g\right)\Rightarrow\frac{HB}{CM}=\frac{AB}{AM}\Rightarrow HB.AM=AB.CM\)
\(\Delta HCA~\Delta BMA\left(g.g\right)\Rightarrow\frac{HC}{BM}=\frac{AC}{AM}\Rightarrow HC.AM=AC.BM\)
Chia vế theo vế, ta được: \(\frac{HB}{HC}=\frac{AB.MC}{AC.MB}\left(1\right)\)
Lại có: \(\Delta ADB~\Delta CDM\left(g.g\right)\Rightarrow\frac{DB}{DM}=\frac{AB}{CM}\Rightarrow DB.CM=DM.AB\)
\(\Delta DAC~\Delta DBM\left(g.g\right)\Rightarrow\frac{DC}{DM}=\frac{AC}{BM}\Rightarrow DC.BM=AC.DM\)
Chia vế theo vế, ta được: \(\frac{DB}{DC}=\frac{AB.MB}{AC.MC}\left(2\right)\)
Cộng vế theo vế (1), (2) ta được: \(\frac{HB}{HC}+\frac{DB}{DC}=\frac{AB}{AC}\left(\frac{MC}{MB}+\frac{MB}{MC}\right)\ge\frac{AB}{AC}.2\sqrt{\frac{MC}{MB}.\frac{MB}{MC}}=\frac{2.AB}{AC}\)
Mà \(\frac{AB}{AC}=\frac{sinC}{sinB}\Rightarrow\frac{HB}{HC}+\frac{MB}{MC}\ge\frac{2.sinC}{sinB}\)
Dấu "=" xảy ra khi \(MB=MC\Leftrightarrow AB=AC\Leftrightarrow\Delta ABC\)cân tại A
a) +) Ta có: IB, IK là 2 tiếp tuyến kẻ từ I
=> IO là tia phân giác \(\widehat{BIK}\)=->\(\widehat{BIO}=\frac{1}{2}\widehat{KIB}\)(1)
Tương tự: \(\widehat{IBO}=\frac{1}{2}\widehat{IBC}\)(2)
+) ND cùng vuông góc với IK và BC
=> IK//BC
=> \(\widehat{KIB}+\widehat{IBC}=180^o\)(3)
Từ (1), (2), (3)
=> \(\widehat{IBO}+\widehat{BIO}=90^o\)=> \(\widehat{IBO}=90^o\)
+) Xét 2 tam giác vuông INO và ODB có:
\(\widehat{ION}=\widehat{OBD}\)( cùng phụ với góc BOD)
=> \(\Delta INO~\Delta ODB\)
=> \(\frac{IN}{OD}=\frac{ON}{BD}\)=> \(IN.BD=R^2\)( với R là bán kính đường tròn (O)) (4)
Tương tự ta cũng chứng minh được: \(NK.DC=R^2\)(5)
(4), (5)=> \(IN.BD=NK.DC\Rightarrow\frac{IN}{NK}=\frac{DC}{BD}\)(6)
b) IK//BC. Theo định lí Thaslet ta có:
\(\frac{IN}{BE}=\frac{NK}{EC}\left(=\frac{AN}{AE}\right)\Rightarrow\frac{IN}{NK}=\frac{BE}{EC}\)(7)
(6),(7)=> \(\frac{DC}{DB}=\frac{BE}{EC}\Rightarrow\frac{BC-BD}{DB}=\frac{BC-EC}{CE}\Rightarrow\frac{BC}{BD}-1=\frac{BC}{CE}-1\Rightarrow\frac{BC}{BD}=\frac{BC}{CE}\Rightarrow BD=CE\)
Vẽ phân giác góc BAC, cắt BC tại E
=> AB/AC = BE/EC
Cần cm : HB/HC)+(MB/MC) ≥ 2.BE/EC (1)
Dễ cm dc : góc BAH=góc MAC
Từ C vẽ đường thẳng song song AB cắt AD tại I , AE tại N, AH tại K
=> BH/HC=AB/CK
BE/EC=AB/CN
MB/MC=AB/CI
=> (1) <=> AB/CK+AB/CI≥2AB/CN
<=> 1/CK+1/CI≥2/CN
ta có tam giác CAK cân tại C (dễ cm dc) => AC=CN
=> (2) <=> 1/CK+1/CI≥1/AC
ta có góc CAI =BAH ( cm rồi)
và góc BAH=AKC (so le trong) =>góc CAD=AKC => tam giác IAC ~ tam giác AKC
=> CK.CI=AC2
Ta có (3) <=>CK+CI/CK.CI≥2AC
⇔CK+CI/AC2≥2AC
⇔CK+CI≥2AC
⇔CK+CI≥2. căn(CK.CI)
=> đpcm