Chứng minh bất dẳng thức Bunhiacôpxki:\(\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+c\right)\left(b+d\right)+2\left(ac+bd\right)\le\left(a+c\right)\left(b+d\right)+2\left(\dfrac{\left(a+c\right)^2}{4}+\dfrac{\left(b+d\right)^2}{4}\right)\\ =\dfrac{1}{2}\left(\left(a+c\right)^2+2\left(a+c\right)\left(b+d\right)+\left(b+d\right)^2\right)\\ =\dfrac{1}{2}\left(a+c+b+d\right)^2=\dfrac{1}{2}\)
Có: \(-\left(a-b\right)^2\le0\) với mọi x
=> \(-a^2+2ab-b^2\le0\)
=>\(a^2+2ab+b^2\le2a^2+2b^2\) (cộng cả 2 vế với \(2a^2;2b^2\))
=>\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow\left(a+b\right)^2-2\left(a^2+b^2\right)\le0\)
\(\Leftrightarrow-\left(a^2-2ab+b^2\right)\le0\)
\(\Leftrightarrow-\left(a-b\right)^2\le0\)
dấu "=" xẩy ra khi và chỉ khi a=b
B1: https://olm.vn/hoi-dap/question/133327.html
B2: áp dụng bđt Bu-nhi-a-cop-xki với 2 bộ số (a;b) và (c;d) ra luôn
Trước hết , ta khai triển vế trái , sau đó , nhóm các hạng tử .
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+b^2d^2+2abcd+a^2d^2+b^2c^2-2abcd\)
\(=\left(a^2c^2+a^2d^2\right)+\left(b^2c^2+b^2d^2\right)\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
Vậy \(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\left(ĐPCM\right)\)
Có \(\hept{\begin{cases}\left|a\right|+\left|b\right|\ge0\\\left|a-b\right|\ge0\end{cases}}\)
\(\left|a\right|+\left|b\right|\ge\left|a-b\right|\)
\(\Leftrightarrow\left(\left|a\right|+\left|b\right|\right)^2\ge\left|a-b\right|^2\)
\(\Leftrightarrow a^2+2.\left|a\right|.\left|b\right|+b^2\ge a^2-2ab+b^2\)
\(\Leftrightarrow2.\left|a\right|.\left|b\right|\ge2ab\)( luôn đúng )
\(\Rightarrow\left|a\right|+\left|b\right|\ge\left|a-b\right|\)
đpcm
Gải sử..
\(1)\)\(\left|a\right|+\left|b\right|\ge\left|a-b\right|\)
\(\Leftrightarrow\)\(\left(\left|a\right|+\left|b\right|\right)^2\ge\left|a-b\right|^2\)
Có \(\left|a-b\right|^2=\left(a-b\right)^2\)
\(\Leftrightarrow\)\(a^2+2\left|ab\right|+b^2\ge a^2-2ab+b^2\)
\(\Leftrightarrow\)\(\left|ab\right|\ge-ab\) ( đúng )
Dấu "=" xảy ra \(\Leftrightarrow\)\(ab< 0\)
\(2)\)\(\left|a\right|+\left|b\right|+\left|c\right|\ge\left|a+b+c\right|\)
\(\Leftrightarrow\)\(\left(\left|a\right|+\left|b\right|+\left|c\right|\right)^2\ge\left|a+b+c\right|^2\)
Có \(\left|a+b+c\right|^2=\left(a+b+c\right)^2\)
\(\Leftrightarrow\)\(a^2+b^2+c^2+2\left|ab\right|+2\left|bc\right|+2\left|ca\right|\ge a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Leftrightarrow\)\(\left|ab\right|+\left|bc\right|+\left|ca\right|\ge ab+bc+ca\) ( đúng )
Dấu "=" xảy ra khi a, b, c cùng dấu ( cùng dương hoặc cùng âm )
\(3)\) Sai đề thì phải. Giả sử \(a=3;b=0\) thì \(\left|a+b\right|< \left|1+ab\right|\)
\(\Leftrightarrow\)\(\left|3+0\right|< \left|1+3.0\right|\)\(\Leftrightarrow\)\(3< 1\) ( ??? )
...
Sửa đề:
\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2\)
Xét hiệu:
\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)-\left(ax+by+cz\right)^2\)
\(=a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2-a^2x^2-b^2y^2-c^2z^2-2axby-2axcz-2bycz\)
\(=a^2y^2+a^2z^2+b^2z^2+b^2x^2+c^2y^2+c^2x^2-2axby-2bycz-2axcz\)
\(=\left(a^2y^2-2axby+b^2x^2\right)+\left(a^2z^2-2axcz+c^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)\)
\(=\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2\ge0\)
=> BĐT luôn đúng
\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\Leftrightarrow a^2x^2+b^2c^2+a^2y^2+b^2y^2\ge a^2x^2+2axby+b^2y^2\)
\(\Leftrightarrow a^2x^2+b^2x^2+a^2y^2+b^2y^2-a^2x^2-2axby-b^2y^2\ge0\Leftrightarrow a^2y^2-2axby+b^2x^2\ge0\)
\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) luôn đúng!
Dấu "=" xảy ra khi \(\frac{a}{x}=\frac{b}{y}\)
Bất đẳng thức cần chứng minh tương đương với
\(a^2c^2+2abcd+b^2d^2\le a^2c^2+b^2c^2+a^2d^2+b^2d^2\)
\(\Leftrightarrow b^2c^2+a^2d^2\ge2abcd\)(luôn đúng)
Vậy bđt được chứng minh
Dấu "=" xảy ra khi a=b=c=d
Bất đẳng thức cần chứng minh tương đương với
a2c2 + 2abcd + b2d2 < a2c2 + b2c2 + a2d2 +b2d2
<=>b2d2 + a2d2 > 2abcd (luôn đúng)
Vậy bất đẳng thức được chứng minh
Dấu = xảy ra khi a=b=c=d k nha