Cho phương trình :\(k^2x^2+5kx+6=0\) trong đó k là một số đã cho:
a,Hãy tìm giá trị của k sao cho một trong các nghiệm của pương trình là x=1.
b, Hãy giải phương trình với giá trị của k vừa tìm được ở trên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với k = 1, ta có phương trình:
(3x – 3)(x – 2) = 0 ⇔ 3x – 3 = 0 hoặc x – 2 = 0
3x – 3 = 0 ⇔ x = 1
x – 2 = 0 ⇔ x = 2
Vậy phương trình có nghiệm x = 1 hoặc x = 2
Với k = 2/3 , ta có phương trình:
(3x - 11/3 )(x – 1) = 0 ⇔ 3x - 11/3 = 0 hoặc x – 1 = 0
3x - 11/3 = 0 ⇔ x = 11/9
x – 1 = 0 ⇔ x = 1
Vậy phương trình có nghiệm x = 11/9 hoặc x = 1.
Thay x = 1 vào phương trình (3x + 2k – 5)(x – 3k + 1) = 0, ta có:
(3.1 + 2k – 5)(1 – 3k + 1) = 0
⇔ (2k – 2)(2 – 3k) = 0 ⇔ 2k – 2 = 0 hoặc 2 – 3k = 0
2k – 2 = 0 ⇔ k = 1
2 – 3k = 0 ⇔ k = 2/3
Vậy với k = 1 hoặc k = 2/3 thì phương trình đã cho có nghiệm x = 1
a: Khi k=0 thì PT sẽ là:
9x^2-25=0
=>x=5/3 hoặc x=-5/3
b: Thay x=-1 vào pt, ta sẽ được:
-k^2+2k+9-25=0
=>-k^2+2k-16=0
=>\(k\in\varnothing\)
Bài 2:
a: \(\Leftrightarrow4x^2\left(ax-3\right)-\left(ax-3\right)=0\)
\(\Leftrightarrow\left(ax-3\right)\left(2x-1\right)\left(2x+1\right)=0\)
Trường hợp 1: a=0
=>(2x-1)(2x+1)=0
=>x=1/2 hoặc x=-1/2
Trường hợp 2: a<>0
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\\x=\dfrac{3}{a}\end{matrix}\right.\)
b: \(\Leftrightarrow a^2x^2\left(2x+5\right)-4\left(2x+5\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(a^2x^2-4\right)=0\)
Trường hợp 1: a=0
Phương trình sẽ là 2x+5=0
hay x=-5/2
Trường hợp 2: a<>0
Phương trình sẽ là \(\left(2x+5\right)\left[\left(ax\right)^2-4\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}\\x=-\dfrac{2}{a}\\x=\dfrac{2}{a}\end{matrix}\right.\)
a/Thay x=1 đc \(k^2+5k+6=0\Leftrightarrow k^2+2k+3k+6=0\)
\(\Leftrightarrow k\left(k+2\right)+3\left(k+2\right)=0\Leftrightarrow\left(k+3\right)\left(k+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}k=-2\\k=-3\end{matrix}\right.\)
b/Thay k=-2 đc \(4x^2-10x+6=0\Leftrightarrow2x^2-5x+3=0\)
\(\Leftrightarrow2x^2-2x-3x+3=0\Leftrightarrow2x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=1\end{matrix}\right.\)
Thay k=-3 đc \(9x^2-15x+6=0\Leftrightarrow3x^2-5x+2=0\)
\(\Leftrightarrow3x^2-3x-2x+2=0\Leftrightarrow3x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=1\end{matrix}\right.\)