K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2020

Cu em giải ko đc nha ah

 mình quên mũ 3 các bạn ạ

7 tháng 10 2020

BĐT cần chứng minh tương đương:

\(x^3+y^3+z^3+6xyz\ge\frac{\left(x+y+z\right)^3}{4}\)

\(\Leftrightarrow x^3+y^3+z^3+6xyz\ge x^2y+y^2z+z^2x+xy^2+yz^2+zx^2\)

Mặt khác theo BĐT Schur thì:

\(\Leftrightarrow x^3+y^3+z^3+3xyz\ge x^2y+y^2z+z^2x+xy^2+yz^2+zx^2\).

Do đó điều trên luôn đúng. BĐT dc chứng minh.

NV
4 tháng 6 2019

\(xy+xz+yz=6xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=6\)

Đặt \(\left\{{}\begin{matrix}\frac{1}{x}=a\\\frac{1}{y}=b\\\frac{1}{z}=c\end{matrix}\right.\) \(\Rightarrow a+b+c=6\)

\(T=\sum x\sqrt{\frac{x}{1+x^3}}=\sum\sqrt{\frac{x^3}{1+x^3}}=\sum\sqrt{\frac{1}{1+\frac{1}{x^3}}}=\sum\frac{1}{\sqrt{1+a^3}}=\sum\frac{1}{\sqrt{\left(a+1\right)\left(a^2-a+1\right)}}\)

\(\Rightarrow T\ge\sum\frac{2}{a+1+a^2-a+1}=\sum\frac{2}{a^2+2}\)

Ta có đánh giá: \(\frac{2}{a^2+2}\ge\frac{7-2a}{9}\) với mọi \(0< a< 6\)

Thật vậy, \(\frac{2}{a^2+2}\ge\frac{7-2a}{9}\Leftrightarrow18-\left(a^2+2\right)\left(7-2a\right)\ge0\)

\(\Leftrightarrow2a^3-7a^2+4a+4\ge0\)

\(\Leftrightarrow\left(a-2\right)^2\left(2a+1\right)\ge0\) luôn đúng với mọi \(0< a< 6\)

Tương tự ta có: \(\frac{2}{b^2+2}\ge\frac{7-2b}{9}\) ; \(\frac{2}{c^2+2}\ge\frac{7-2c}{9}\)

\(\Rightarrow T\ge\frac{21-2\left(a+b+c\right)}{9}=\frac{21-12}{9}=1\)

\(\Rightarrow T_{min}=1\) khi \(a=b=c=2\) hay \(x=y=z=\frac{1}{2}\)

2 tháng 6 2017

Câu hỏi của Minh Hà Tuấn - Toán lớp 9 - Học toán với OnlineMath

Ta có: `x/3=y/2 -> x/9=y/6`

`y/3=z/4 -> y/6=z/8`

Từ `2` điều trên `-> x/9=y/6=z/8`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`x/9=y/6=z/8=(x+y+z)/(9+6+8)=46/23=2`

`-> x/9=y/6=z/8=2`

`-> x=2*9=18, y=2*6=12, z=2*8=16.`

7 tháng 4 2023

thanks b gấc nhìuu

31 tháng 3 2019

Bài này chỉ vận dụng phân tích đa thức thành nhân tử thôi

Có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=6xyz\)

\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-xz\right)=6xyz\)

\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=3xyz\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=3xyz\left(x+y+z\right)\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz=3xyz\left(x+y+z\right)\)

\(\Leftrightarrow x^2+y^3+z^3=3xyz\left(x+y+z+1\right)\)

Do đó: \(x^3+y^3+z^3+1=3xyz\left(x+y+z+1\right)+1⋮x+y+z+1\)

Suy ra: \(1⋮x+y+z+1\)

 \(\Rightarrow x+y+z+1=1\)( do \(x,y,z\ge0\Rightarrow x+y+z+1\ge1\))

\(\Leftrightarrow x=y=z=0\)

Vậy \(x=y=z=0\)