K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2020

Từ : \(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\)

=> \(\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}\)

Ta có : \(\frac{z+x}{10}=\frac{y+z}{6}=\frac{\left(z+x\right)-\left(y+z\right)}{10-6}=\frac{x-y}{4}\left(1\right)\)

\(\frac{x+y}{15}=\frac{z+x}{10}=\frac{\left(x+y\right)-\left(z+x\right)}{15-10}=\frac{y-z}{5}\left(2\right)\)

Vậy : ...

8 tháng 3 2020

\(\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}=k\Rightarrow\hept{\begin{cases}x+y=15k\\y+z=6k\\z+x=10k\end{cases}\Rightarrow\hept{\begin{cases}x-y=4k\\y-z=5k\end{cases}\Rightarrow}\frac{x-y}{4}=\frac{y-z}{5}}\)

9 tháng 10 2015

Vì 5(y+z)=3(z+x) =>(x+z)/5=(y+z)/3=(x+z-y-z)/(5-3) = (x-y)/2

Ap dung tinh chat day ti so bang nhau ta co : 

Do đó (x+z)/5 = (x-y)/2 \(\Leftrightarrow\) (x+z)/10=(x-y)/4 (1)  

Ta lại có: 2(x+y)=3(z+x) \(\Rightarrow\) (x+z)/2=(x+y)/3=(x+z-x-y)/(2-3)=y-z

Ap dung tinh chat day ti so bang nhau ta co : 

Do đó (x+z)/2 = y-z \(\Leftrightarrow\) (x+z)/10=(y-z)/5 (2)  

Từ (1)(2) suy ra (x-y)/4=(y-z)/5

30 tháng 6 2017

\(2.\left(x+y\right)=5.\left(y+z\right)=3.\left(z+x\right)\)

\(\Rightarrow\text{ }\frac{2.\left(x+y\right)}{30}=\frac{5.\left(y+z\right)}{30}=\frac{3.\left(z+x\right)}{30}\)

\(\Rightarrow\text{ }\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}\)

\(\frac{x+y}{15}=\frac{z+x}{10}=\frac{\left(x+y\right)-\left(z+x\right)}{15-10}=\frac{y-z}{5}\text{ }\left(1\right)\)

\(\frac{z+x}{10}=\frac{y+z}{6}=\frac{\left(z+x\right)-\left(y+z\right)}{10-6}=\frac{x-y}{4}\text{ }\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\text{ }\frac{y-z}{5}=\frac{x-y}{4}\)

2 tháng 11 2016

\(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\)

\(\Leftrightarrow\frac{x+y}{\frac{1}{2}}=\frac{y+z}{\frac{1}{5}}=\frac{z+x}{\frac{1}{3}}=\frac{x+y-z-x}{\frac{1}{2}-\frac{1}{3}}=\frac{z+x-y-z}{\frac{1}{3}-\frac{1}{5}}\)

\(\Leftrightarrow\frac{y-z}{\frac{1}{2}-\frac{1}{3}}=\frac{x-y}{\frac{1}{3}-\frac{1}{5}}\Rightarrow\frac{y-z}{\frac{1}{6}}=\frac{x-y}{\frac{2}{15}}\)

\(\Rightarrow6\left(y-z\right)=\frac{15\left(x-y\right)}{2}\)

\(\Leftrightarrow2\left(y-z\right)=\frac{5\left(x-y\right)}{2}\)

Nhân cả hai vế với \(\frac{1}{10}\) ta có:

\(\frac{2\left(y-z\right)}{10}=\frac{5\left(x-y\right)}{20}\Leftrightarrow\frac{y-z}{5}=\frac{x-y}{4}\)(ĐPCM)

1 tháng 11 2016

làm thì không biết đúng không mà chắc cugx được nhưng dài khi mô đi học đưa giấy cho chứ ghi trên này mỏi lắm 

Vì 5(y+z) = 3(x+z)

Suy ra (x+z) / 5 = (y+z) / 3 = (x+z-y-z) / 5-3 = (x-y) / 2

Suy ra (x+z) / 5 = (x-y) / 2 tương đương (x+z) / 10 = (x-y) / 4                               (1)

2(x+y) = 3(x+z)

Suy ra (x+z) / 2 = (x+y) / 3 = (x+z-x-y) / 2-3 = y-z

(x+z) / 2 = y-z

Tương đương (x+z) / 10 = (y-z) / 5                                                                      (2)

Từ (1) và (2) suy ra:

 \frac{(x - y)}{4}=\frac{(y-z)}{5}

26 tháng 5 2015

đặt A=x/x+y+z    +y/y+z+t   +z/z+t+x   +t/t+x+y

ta có      x/x+y+z>x/x+y+z+t

y/y+z+t>y/x+y+z+t

z/z+t+x>z/z+t+x+y

t/t+x+y>t/x+t+y+z

=>A>x/x+y+t+z  +t/x+y+t+z  +z/x+y+t+z  +y/x+t+y+z=x+y+z+t/x+y+z+t=1>3/4  (1)

*)y/y+z+t<y+x/y+z+t+x

x/x+y+z<x+t/x+y+z+t

z/z+t+x<z+y/x+y+z+t

t/t+x+y<t+z/t+x+y+z

=>A<y+x/x+y+z+t  +x+t/x+y+z+t  +z+y/x+y+z+t  +t+z/x+y+z+t

            =y+x+x+t+z+y+t+z/x+y+z+t=2(x+y+z+t)/x+y+z+t=2<5/2   (2)

từ (1) và (2) =>3/4<A<5/2

=>

26 tháng 5 2015

Ta có:

\(\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}<\frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}<\frac{x+t}{x+y+z+t}+\frac{x+y}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+t}{x+y+z+t}\)

\(\Rightarrow1<\frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}<2\)

\(\Rightarrow\frac{3}{4}<\frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}<\frac{5}{2}\)