K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2020

Từ 2x=3y=5z=>\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

mà x +y + z = 97

Áp dụng tính chất dãy tỉ số bằng nhau và điều kiện x + y + z = 97

Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{97}{10}=9,7\)

nên \(\frac{x}{2}=9,7\Rightarrow x=9,7.2\Rightarrow19,4\)

\(\frac{y}{3}=9,7\Rightarrow y=9,7.3\Rightarrow y=29,1\)

\(\frac{z}{5}=9,7\Rightarrow z=9,7.5\Rightarrow z=48,5\)

Vậy x=19,4

y=29,1

z=48,5

8 tháng 3 2020

Ta có : 2x = 3y = 5z \(\Rightarrow\)x/2 = y/3 = z/5

Áp dung tính chất dãy tỉ số bằng nhau ta có :

x/2 = y/3 =z/5 =x + y + z / 2+ 3+5= 97/10=9,7

Do đó : x/2 = 9,7 ×2= 19,4

y/3 = 9,7 ×3 = 29,1

z/5 = 9,7×5= 48,5

Vây x = 19,4 ; y = 29,1 ; z =48,5

chúc b hc tốt:-)

8 tháng 10 2021

c) \(2x=3y=5z\)\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)

Áp dụng tính chát dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)

\(\left\{{}\begin{matrix}x=5.15=75\\y=5.10=50\\z=5.6=30\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
9 tháng 10 2021

Lời giải:

$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$

$\Rightarrow \frac{x}{21}=\frac{y}{14}$

$5y=7z\Rightarrow \frac{y}{7}=\frac{z}{5}\Rightarrow \frac{y}{14}=\frac{z}{10}$

Vậy:

$\frac{x}{21}=\frac{y}{14}=\frac{z}{10}$

$=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2$

$\Rightarrow x=21.2=42; y=14.2=28; z=10.2=20$

Tương tự đến hết, kiểm tra lại hộ mk nhé ! 

\(\hept{\begin{cases}3x+2y=7y-3x\\x-y=10\end{cases}\Leftrightarrow\hept{\begin{cases}6x-5y=0\left(1\right)\\x=10+y\left(2\right)\end{cases}}}\)

Thay vào phương trình 1 ta có : 

\(6\left(10+y\right)-5y=0\)

\(\Leftrightarrow60+6y-5y=0\Leftrightarrow60+y=0\Leftrightarrow y=-60\)

Thay vào x ta đc : \(x=10+\left(-60\right)=-50\)

à mk xin lỗi d ko áp dụng đc 

\(6x=4y=3z=\frac{x}{4}=\frac{y}{6};\frac{y}{3}=\frac{z}{4}\)

Ta có : \(\frac{x}{12}=\frac{y}{18}=\frac{z}{24}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có : 

\(\frac{x}{12}=\frac{y}{18}=\frac{z}{24}=\frac{x+y+z}{12+18+24}=\frac{18}{54}=\frac{1}{3}\)

Làm nốt nhé ! 

AH
Akai Haruma
Giáo viên
16 tháng 7 2021

Lời giải:

$2x=3y\Leftrightarrow \frac{x}{3}=\frac{y}{2}\Leftrightarrow \frac{x}{6}=\frac{y}{4}$

$5y=4z\Leftrightarrow \frac{y}{4}=\frac{z}{5}$

Vậy:

$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}$

$\Rightarrow (\frac{x}{6})^3=(\frac{y}{4})^3=(\frac{z}{5})^3=\frac{xyz}{6.4.5}=\frac{120}{120}=1$

$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}=1$

$\Rightarrow x=6; y=4; z=5$

16 tháng 7 2021

Em cảm ơn cô ạ!

31 tháng 7 2020

a) Ta có 3x = 2y = z 

=> \(\frac{3x}{6}=\frac{2y}{6}=\frac{z}{6}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{x+y+z}{2+3+6}=\frac{99}{11}=9\)

=> \(\hept{\begin{cases}x=18\\y=27\\z=54\end{cases}}\)

b) 6x = 10y = 15z 

=> \(\frac{6x}{30}=\frac{10y}{30}=\frac{15z}{30}\)

=> \(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=\frac{x+y+z}{5+3+2}=\frac{90}{10}=9\)

=> \(\hept{\begin{cases}x=45\\y=27\\z=18\end{cases}}\)

c) 6x = 4y = 2z

=> \(\frac{6x}{12}=\frac{4y}{12}=\frac{2z}{12}\)

=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{x+y+z}{2+3+6}=\frac{27}{11}\)

=> \(\hept{\begin{cases}x=\frac{54}{11}\\y=\frac{81}{11}\\z=\frac{162}{11}\end{cases}}\)

d) x = 3y = 2z

=> \(\frac{x}{6}=\frac{3y}{6}=\frac{2z}{6}\)

=> \(\frac{x}{6}=\frac{y}{2}=\frac{z}{3}\)

=> \(\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{12-6+12}=\frac{48}{18}=\frac{8}{3}\)

=> \(\hept{\begin{cases}x=16\\y=\frac{16}{3}\\z=8\end{cases}}\)

6 tháng 7 2015

4x=3y, 5y=3z=>\(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{12}=\frac{z}{20}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

áp dụng tính chất của dãy tỉ số bằng nhau ta có;

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

suy ra:

\(\frac{x}{9}=3\Rightarrow x=27\)

\(\frac{y}{12}=3\Rightarrow y=36\)

\(\frac{z}{20}=3\Rightarrow z=60\)

4x = 3y => \(\frac{x}{3}=\frac{y}{4}\) => \(\frac{x}{9}=\frac{y}{12}\) (1)

5y = 3z => \(\frac{y}{3}=\frac{z}{5}\) => \(\frac{y}{12}=\frac{z}{20}\)  (2)

(1);(2) => \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{2.9-3.12+20}=\frac{6}{2}=3\) 

=> x = 3.9 = 27; b = 3.12 = 36; c = 3.20 = 60

15 tháng 7 2015

a)\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{21}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{98}{48}=\frac{49}{23}\)

suy ra :

\(\frac{x}{10}=\frac{49}{23}\Rightarrow x=\frac{490}{23}\)

\(\frac{y}{15}=\frac{49}{23}\Rightarrow y=\frac{735}{23}\)

\(\frac{z}{21}=\frac{49}{23}\Rightarrow z=\frac{1029}{23}\)

bạn xem lại đề ra số hơi xấu