K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
3 tháng 9 2021

xét mọi số chính phương đều có thể viết dưới dạng :

\(\left(a\cdot n+b\right)^2\) với mọi số  \(a,b\) là các số tự nhiên và b nhở hơn n

mà ta có :

\(\left(a\cdot n+b\right)^2=a^2\cdot n^2+2ab\cdot n+b^2\equiv b^2mod\left(n\right)\)

vậy \(b^2< n\forall b< n\)điều này chỉ đúng khi n=2

vậy n=2

3 tháng 9 2021

tự làm , ok

2 tháng 10 2020

\(\sqrt{n}-\sqrt{n-1}< \frac{1}{100}\Leftrightarrow\frac{1}{\sqrt{n}-\sqrt{n-1}}>100\Leftrightarrow\sqrt{n}+\sqrt{n-1}>100\left(1\right)\)

Đến đây có thể giải bpt(1) bằng cách chuyển vế \(\sqrt{n-1}>100-\sqrt{n}\), bình phương 2  vế và đưa về \(\sqrt{n}>50,005\). do đó \(n>2500,500025\). Do \(n\in N\)và nhỏ nhất nên n=2501

Cũng có thể ước lượng từ (1) để thấy \(\sqrt{n}\)vào khoảng 50. Với \(n\le2500\)thì \(\sqrt{n}+\sqrt{n-1}\le\sqrt{2500}+\sqrt{2499}< 100\)

Với n=2501 thì \(\sqrt{n}+\sqrt{n-1}=\sqrt{2501}+\sqrt{2500}>100\)

Ta chọn n=2501

21 tháng 5 2016

Ta có: n+1 chia hết cho 165

=> n+1 thuộc B(165) = { 0 ; 165;330;495;660.....}

=> n = { -1 ; 164 ; 329 ; 494;659;............}

Vì n chia hết cho 21 

=> n = 

27 tháng 12 2023

bây sai cả 5n+ 1 chia hết cho 7 thì kết quả là số tự nhiên 

 

6 tháng 12 2016

bai2

UCLN (n,n+2)=d

=>(n+2)-n chia hết cho d

2 chia het cho d

vay d thuoc uoc cua 2={1,2} 

nếu n chia hết cho 2  uoc chung lon nhta (n,n+2) la 2

neu n ko chia het cho 2=> (n,n+2) nguyen to cung nhau

BCNN =n.(n+2) neu n le

BCNN=n.(n+2)/2

27 tháng 3 2018

Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

12 tháng 9 2023

a là số nhỏ nhất.

\(\Rightarrow a< b;a< c\)

Và b nằm giữa a và c nên \(b< c\)

Nên \(a< b< c\)

Ví dụ, 2,3,4.

Thì 2 là số nhỏ nhất, 3 giữa 2 và 4 trên tia số thì 2<3<4