K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2016

+) Với n = 1 thì ta có 22n + 1 + 1 (*) =  23 + 1 = 8 + 1 = 9 chia hết cho 3

+) Giả sử (*) đúng với n = k => 22k + 1 + 1 chia hết cho 3 thì ta cần chứng minh (*) cũng đúng với k + 1 tức 22k + 3 + 1 chia hết cho 3

Thật vậy:

22k + 3 + 1 

= 4.22k + 1 + 1

= (22k + 1 + 1) + 3.22k + 1 

Vì 22k + 1 + 1 chia hết cho 3 và 3.22k + 1 chia hết cho 3

=> (22k + 1 + 1) + 3.22k  + 1 chia hết cho 3

=> Phương pháp qui nạp đã được chứng minh

Vậy với mọi n thuộc N* thì 22n + 1 + 1 chia hết cho 3

10 tháng 5 2022

                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22 tháng 11 2017

Để chứng minh , ta xét 2 trường hợp

TH1: n là số lẻ

=> (n+8)(n+3)=lẻ x chẵn .( Vì số lẻ cộng với số chẵn ta đc số lẻ , số lẻ cộng với số lẻ ta đc một số chẵn)

Mà số chẵn nào cũng chia hết cho 2

=> (n+8)(n+3) chia hết cho 2.(1)

TH2 : n là số chẵn 

=> (n+8)(n+3)= chẵn x lẻ .(Vì số chẵn cộng với số chẵn ta đc số lẻ , số chẵn cộng với số lẻ ta đc một số lẻ)

Mà số chẵn nào cũng chia hết cho 2

=> (n+8)(n+3) chia hết cho 2.(2)

Từ (1) và (2)

=>(n+8)(n+3) luôn chia hết cho 2 với mọi n thuộc N

24 tháng 7 2018

nhan tung ra la xong

13 tháng 2 2019

Vì n nhân với số nào cũng chia hết cho n nên với mọi n thuộc Z, A = n.(5n+3) chia hết cho n

13 tháng 2 2019

ta co:n.(a+b)chia het cho n

suy ra: n.(5.n+3) chia het cho n(dpcm)

19 tháng 11 2015

vì 60n chc 30

45 kchc 30nên60n + 45 kchc 30

15 làm tương tự

17 tháng 7 2016

a) n có 2 trường hợp

Với n = 2k +1 ( k thuộc Z)

=> (2k+1+6) . (2k+1+7)

= (2k + 7) .( 2k + 8)

= (2k + 7) . 2.(k+4) (chia hết cho 2)      ( 1 )

Với n = 2k

=> (2k + 6) . ( 2k + 7)

= 2. (k+3) . ( 2k + 7)   ( chia hết cho 2)     (2 )

Từ 1 và 2 

=> moi n thuoc Z thi

(n+6)x(n+7) chia het cho 2

17 tháng 7 2016

a) + Nếu n lẻ thì n + 7 chẵn => n + 7 chia hết cho 2 => (n + 6).(n + 7) chia hết cho 2

+ Nếu n chẵn thì n + 6 chẵn => n + 6 chia hết cho 2=> (n + 6).(n + 7) chia hết cho 2

=> (n + 6).(n + 7) luôn chia hết cho 2

Nói ngặn gọn hơn là: Do (n + 6).(n + 7) là tích 2 số tự nhiên liên tiếp nên chia hết cho 2

b) n2 + n + 3

= n.(n + 1) + 3

Vì n.(n + 1) là tích 2 số tự nhiên nên chia hết cho 2; 3 không chia hết cho 2

=> n2 + n + 3 không chia hết cho 2