CHO TAM GIÁC ABC CÓ A=60, D TRUNG ĐIỂM AC . TRÊN AB LẤY E SAO CHO AE=AD. CHỨNG MINH CE VUÔNG GÓC với cạnh AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tg là tam giác nha !
Ta có : AE = AD ( gt )
=> tgAED cân tại A
Mà : gócA =60o
Do đó : tgAED là tg đều ( tg cân có 1 góc bằng 60o là tg đều )
=> gócE1 = gócD1 = 60o ( các góc trong tg đều có số đo bằng 60o )
Ta có : gócD2 = gócA + gócE1 = 60o + 60o =120o ( góc ngoài của tg bằng tổng 2 góc trong không kề với nó )
Ta có : gócE2 + gócC2 + gócD2 = 180o ( tổng 3 góc trong tg )
gócE2 + gócC2 =180o - gócD2 = 180o - 120o = 60o
Ta có : AED là tg đều ( cmt )
=> ED = AD ( 1 )
Ta có : DC = AD ( D là trung điểm của AC ( gt ) ) ( 2 )
Từ ( 1 ) và ( 2 ) suy ra ED = DC ( cùng bằng với AD )
=> tgDEC cân tại D ( có 2 cạnh bên ED và DC bằng nhau )
=> góc E2 = gócC2 ( 2 góc ở đáy của tg cân bằng nhau )
Ta có : \(gócE2=gócC2=\frac{gócE2+gócC2}{2}=\frac{60^o}{2}=30^o\)
Ta có : gócAEC = gócE1 + gócE2 = 60o + 30o = 90o ( ED nằm giữa AE và EC )
=> \(CE\perp AB\)
Học tốt nha !
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: Xét ΔAMD và ΔANB có
AM=AN
MD=NB
AD=AB
Do đó: ΔAMD=ΔANB
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
Suy ra: BC=DE
Bài 5: Cho tam giác ABC vuông tại A có AB < AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC. Chứng minh rằng: a) DE = BC b) DE vuông góc với BC
sao de roi ban nhe ko co canh nao vuong goc voi goc dau