giải pt nghiệm nguyên sau
\(4xy^2-3x-3y^2=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số
Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số
VT sẽ được phân tích thành
\(\left(y-x\right)\left(y+x\right)\left(2y-x\right)\left(2y+x\right)\left(3y+x\right)=33\)
Nếu x,y là các số nguyên =>VT là tích của 5 số nguyên, mà 33 chỉ là tích của nhiều nhất là 4 số nguyên => vô lí=> PT k có nghiệm nguyên
^_^
\(\sqrt{2x+1}-\sqrt{3x}=x-1\)
ĐK: \(x\ge0\)
\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)
\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)
\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)
Bài 1 trước ạ
Trước khi trả lời câu hỏi này mình muốn cung cấp thêm chút kiến thức
HPT \(\left\{{}\begin{matrix}ax+by=c\\a'x+b'y=c'\end{matrix}\right.\)
*Có nghiệm duy nhất( tức là 1 nghiệm)⇔\(\frac{a}{a'}\)≠\(\frac{b}{b'}\)
*Vô nghệm (Tức không có nghiệm nào)⇔\(\frac{a}{a'}=\frac{b}{b'}\)≠\(\frac{c}{c'}\)
*Vô số nghiệm⇔\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}\)
Áp dụng điều trên t nhận thấy
a \(\frac{2}{3}\)≠\(\frac{1}{-1}\)=> HPT có nghiệm duy nhất
b\(\frac{1}{2}\)=\(\frac{2}{4}\)≠\(\frac{3}{1}\)=> HPT vô nghiệm
Tương tụ vầy c) có nghiệm duy nhất. d có vô số nghiệm
Bài 2
a Thay x=4 và y=3 vào PT ax+4y=5b-10 được 4a+12=5b-10(1)
Tương tự thay vào cái dưới ta được 12+3y=7-4a(2)
Từ (1) và (2) ta có một hpt mới
\(\left\{{}\begin{matrix}4a+12=5b-10\\12+3b=7-4a\end{matrix}\right.\) ⇔\(\left\{{}\begin{matrix}4a-5b=-22\\4a+3b=-5\end{matrix}\right.\) ⇔\(\left\{{}\begin{matrix}4a-5b=-22\\-8b=-17\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}a=\frac{-91}{32}\\b=\frac{17}{8}\end{matrix}\right.\)
Bài 3
\(\left\{{}\begin{matrix}2x-y=2xy\\5x+3y=4xy\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}4x-2y=4xy\left(1\right)\\5x+3y=4xy\left(2\right)\end{matrix}\right.\)
Lấy cả hai vế của (1) trừ cho cả hai vế của (2) ta được
-x-5y=0⇔x=-5y. Thay vào (1) ta được
-20y-2y=-20y2
⇔\(20y^2-22y=0\)
⇔y(20y-22)=0
⇔\(\left[{}\begin{matrix}y=0=>x=0\\y=\frac{11}{10}=>x=\frac{-11}{2}\end{matrix}\right.\)
Vậy...
Ta có \(4xy^2-3x-3y^2=1\Leftrightarrow y^2\left(4x-3\right)=3x+1\Leftrightarrow y^2=\frac{3x+1}{4x-3}\inℤ\left(do4x-3\ne0\right)\)
\(\Rightarrow3x+1⋮4x-3\Rightarrow4\left(3x+1\right)⋮4x-3\Leftrightarrow3\left(4x-3\right)+13⋮4x-3\Leftrightarrow13⋮4x-3\)
\(\Rightarrow4x-3\inƯ\left(13\right)=\left\{\pm1,\pm13\right\}\Leftrightarrow4x\in\left\{-10,2,4,16\right\}\Rightarrow x\in\left\{1,4\right\}\)(do x thuộc Z)
Với \(x=1\Rightarrow y^2=4\Rightarrow y=\pm2\left(tm\right)\)
Với \(x=4\Rightarrow y^2=1\Rightarrow y=\pm1\left(tm\right)\)
4xy²−3x−3y²=14xy²−3x−3y²=1
⇔ y²(4x−3)−0,75(4x−3)=3,25y²(4x−3)−0,75(4x−3)=3,25
⇔ (4x−3)(y²−0,75)=3,25(4x−3)(y²−0,75)=3,25
⇔ (4x−3).(4y²−3)=13=1.13=13.1=(−1).(−13)=(−13).(−1)(4x−3).(4y²−3)=13=1.13=13.1=(−1).(−13)=(−13).(−1)
Ta có bảng giá trị
4x-3 | 1 | 13 | -1 | -13 |
x | 1 | 4 | / | / |
4y²-3 | 13 | 1 | -13 | -1 |
y | ±2 | ±1 | / | / |
Vậy ...