K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2021

ABCD là hình bình hành

21 tháng 1 2023

1B,2B nha bạn yeu

15 tháng 6 2019

Sử dụng công thức (1): Với a, b, c là 3 cạnh đối diện của \(\widehat{A}\)\(\widehat{B}\)\(\widehat{C}\) của tam giác ABC thì \(S_{ABC}=\frac{1}{2}AB\)\(AC\sin A\)

Chứng minh: Kẻ \(BH\perp AC\Rightarrow S_{ABC}=\frac{BH.AC}{2}\)

Xét tam giác ABH vuông thì sin \(A=\frac{BH}{AB}\Rightarrow BH=\sin A.AC\)

Từ hai điều trên suy ra: \(S_{ABC}=\frac{AB.AC.\sin A}{2}\left(đpcm\right)\)

Trở lại bài toán:

Sử dụng công thức \(\sin\alpha=\sin\left(180-\alpha\right)\Rightarrow\sin AOD=\sin AOB=\sin BOC=\sin DOC\)

Áp dụng công thức (1):

\(S_{ABCD}=S_{AOB}=S_{AOD}=S_{DOC}=S_{BOC}=\frac{AO.OB.\sin AOB+AO.DO.\sin AOD+DO.CO.\sin DOC+BO.CO.\sin BOC}{2}\)

\(=\frac{\sin AOB\left(AO.OB+AO.OD+DO.OC+BO.OC\right)}{2}=\frac{\sin AOB\left(AO.BD+OC.BD\right)}{2}=\frac{\sin50^o.BD.AC}{2}\)

\(=\frac{20\sin50}{2}=10\sin50\)

25 tháng 10 2023

Xét ΔOAD và ΔOCB có

\(\widehat{OAD}=\widehat{OCB}\)

OA=OC

\(\widehat{AOD}=\widehat{COB}\)

Do đó: ΔOAD=ΔOCB

=>AD=BC

\(\widehat{OAD}=\widehat{OCB}\)

mà hai góc này ở vị trí so le trong

nên AD//BC

Xét tứ giác ABCD có

AD//BC

AD=BC

Do đó: ABCD là hình bình hành

Xét tứ giác ABCD có

O là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AB//CD; AD//BC

21 tháng 10 2021

1) Vì ABCD là hình bình hành

=> OA=OC, OB=OD

Ta có: OM=OA/2

           OP=OC/2

Mà OA=OC => OM=OP

Cm tương tự ta được OQ=ON

Tứ giác MNPQ có OM=OP. OQ=ON

=> MNPQ là hình bình hành

2) Tứ giác ANCQ có OA=OC (cmt), OQ=ON (cmt)

Suy ra tứ giác ANCQ là hình bình hành

Tứ giác BPDM có OB=OD (cmt), OM=OP (cmt)

Suy ra tứ giác BPDM là hình bình hành