Chứng tỏ
a, 1/3x4=1/3-1/4
b,1/5x6=1/5-1/6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho A=\(\frac{1}{1x2}+\frac{1}{3x4}+\frac{1}{5x6}+....+\frac{1}{99x100}\)
Chứng minh rằng: 7/12<A<5/6
\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-2\cdot\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
Do \(\frac{1}{51}>\frac{1}{52}>...>\frac{1}{100}\Rightarrow A=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>25\cdot\frac{1}{80}+25\cdot\frac{1}{100}=\frac{7}{12}\)
và \(A
\(B=\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{50\cdot51}\right)+\left(\dfrac{5}{6}+\dfrac{19}{20}+...+\dfrac{2549}{2550}\right)\)
\(B=\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+..+\dfrac{1}{50\cdot51}\right)+\left(1-\dfrac{1}{2\cdot3}\right)+\left(1-\dfrac{1}{3\cdot4}\right)+...+\left(1-\dfrac{1}{50\cdot51}\right)\)
\(B=\left(1+1+...+1\right)+\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{50\cdot51}\right)-\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{50\cdot51}\right)\)
\(B=1\cdot49=49\) (vì có (50 - 2) : 1 + 1 = 49 số hạng 1)
\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}\)
\(=\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+\frac{5-4}{4\times5}+\frac{6-5}{5\times6}\)
\(=\frac{3}{2\times3}-\frac{2}{2\times3}+\frac{4}{3\times4}-\frac{3}{3\times4}+\frac{5}{4\times5}-\frac{4}{4\times5}+\frac{6}{5\times6}-\frac{5}{5\times6}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=\frac{1}{2}-\frac{1}{6}\)
\(=\frac{1}{3}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{6}-\dfrac{1}{7}=\dfrac{1}{2}-\dfrac{1}{7}=\dfrac{5}{14}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{20}-\dfrac{1}{21}=\dfrac{21-2}{42}=\dfrac{19}{42}\)
Lời giải:
Gọi biểu thức số 1 là A và số 2 là B
\(A=\frac{3-2}{2\times 3}+\frac{4-3}{3\times 4}+\frac{5-4}{4\times 5}+\frac{6-5}{5\times 6}+\frac{7-6}{6\times 7}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(=\frac{1}{2}-\frac{1}{7}=\frac{5}{14}\)
B tương tự A:
\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{20}-\frac{1}{21}\)
\(=\frac{1}{2}-\frac{1}{21}=\frac{19}{42}\)
\(M=\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+\frac{1}{9.10}\right)\)\(-\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\right)\)
\(M=\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}\right)\)\(-\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\right)\)
\(M=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{6}-\frac{1}{7}-\frac{1}{8}-\frac{1}{9}-\frac{1}{10}\)
\(M=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{2}{6}-\frac{2}{8}-\frac{2}{10}\)
\(M=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}\)
\(M=1-\frac{1}{2}-\frac{2}{4}\)
\(M=1-\frac{1}{2}-\frac{1}{2}\)
\(M=0\)
HOK TỐT
\(\left(x+\dfrac{1}{2\times3}\right)+\left(x+\dfrac{1}{3\times4}\right)+\left(x+\dfrac{1}{4\times5}\right)+\left(x+\dfrac{1}{5\times6}\right)=\dfrac{25}{3}\)
\(x+\dfrac{1}{2\times3}+x+\dfrac{1}{3\times4}+x+\dfrac{1}{4\times5}+x+\dfrac{1}{5\times6}=\dfrac{25}{3}\)
\(x\times4+\left(\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}\right)=\dfrac{25}{3}\)
\(x\times4+\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\right)=\dfrac{25}{3}\)
\(x\times4+\left(\dfrac{1}{2}-\dfrac{1}{6}\right)=\dfrac{25}{3}\)
\(x\times4+\dfrac{4}{12}=\dfrac{25}{3}\)
\(x\times4=\dfrac{25}{3}-\dfrac{4}{12}\)
\(x\times4=\dfrac{25}{3}-\dfrac{1}{3}\)
\(x\times4=\dfrac{24}{3}\)
\(x\times4=8\)
\(x=8\div4\)
\(x=2\)
:))
1> a) \(\frac{5}{7}x4:\frac{5}{9}=\frac{5}{7}:\frac{5}{9}x4=\frac{5}{7}x\frac{9}{5}x4=\frac{9}{7}x4=\frac{9x4}{7}=\frac{36}{7}\)
\(b,8x\frac{2}{3}:\frac{1}{2}=8x\frac{2}{3}x\frac{2}{1}=8x2x\frac{2}{3}=16x\frac{2}{3}=\frac{32}{3}\)
\(c,6:\frac{3}{5}-\frac{7}{6}x\frac{6}{7}=6x\frac{5}{3}-1=10-1=9\)
\(\frac{21}{5}x\frac{10}{11}+\frac{57}{11}=\frac{42}{11}+\frac{57}{11}=\frac{99}{11}=9\)
2) a) \(\frac{35}{9}:x=\frac{35}{6}\)
\(x=\frac{35}{9}:\frac{35}{6}\)
\(x=\frac{35}{9}x\frac{6}{35}\)
\(x=\frac{2}{3}\)
b) \(\left(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+\frac{1}{5x6}\right)x10-X=0\)
\(\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{5}-\frac{1}{6}\right)x10-X=0\)
\(\left(\frac{1}{1}-\frac{1}{6}\right)x10-X=10\)
\(\frac{5}{6}x10-X=0\)
\(X=\frac{5}{6}x10=\frac{25}{3}\)
Đúng nha !!!!
1/a/\(\frac{5}{7}\cdot4:\frac{5}{9}=\frac{20}{7}:\frac{5}{9}=\frac{20}{7}\cdot\frac{9}{5}=\frac{36}{7}\)
b/\(8\cdot\frac{2}{3}:\frac{1}{2}=\frac{16}{3}:\frac{1}{2}=\frac{16}{3}\cdot\frac{2}{1}=\frac{32}{3}\)
c/\(6:\frac{3}{5}-\frac{7}{6}\cdot\frac{6}{7}=6\cdot\frac{5}{3}-1=10-1=9\)
2/a/\(\frac{35}{9}:x=\frac{35}{6}\)
\(x=\frac{35}{9}:\frac{35}{6}=\frac{35}{9}\cdot\frac{6}{35}\)
\(x=\frac{2}{3}\)
b/\(\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}\right)\cdot10-x=0\)
\(\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\right)\cdot10-x=0\)
\(\left(\frac{30}{60}+\frac{10}{60}+\frac{5}{60}+\frac{2}{30}\right)\cdot10-x=0\)
\(\frac{47}{60}\cdot10-x=0\)
\(\frac{47}{6}-x=0\)
\(x=\frac{47}{6}-0\)
\(x=\frac{47}{6}\)
a)Ta có: \(\frac{1}{3.4}=\frac{1}{12}\)
và \(\frac{1}{3}-\frac{1}{4}=\frac{4}{12}-\frac{3}{12}=\frac{1}{12}\)
\(\Rightarrow\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
b)Ta có : \(\frac{1}{5.6}=\frac{1}{30}\)
và \(\frac{1}{5}-\frac{1}{6}=\frac{6}{30}-\frac{5}{30}=\frac{1}{30}\)
\(\Rightarrow\frac{1}{5.6}=\frac{1}{5}-\frac{1}{6}\)
hok tốt!!