K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2020

a) Vì x nguyên => x+1 nguyên

x+1 thuộc Ư (6)={-6;-3;-2;-1;1;2;3;6}

Ta có bảng

x+1-6-3-2-11236
x-7-4-3-20125

b) ta có: 4x+3=4(x-2)+11

Để 4x+3 chia hết cho x-1 thì 4(x-2)+11 chia hết cho x-2

Mà 4(x-2) chia hết cho x-2

=> 11 chia hết cho x-2

Mà x nguyên => x-2 nguyên

=> x-2 thuộc Ư (11)={-11;-1;1;11}
Ta có bảng

x-2-11-1111
x-91313

d) Vì x, y+3 nguyên => x; y+3 nguyên

Mà x(y+3)=-8

=> x; y+3 thuộc Ư (-8)={-8;-4;-2;-1;1;2;4;8}

Ta có bảng

x-8-4-2-11248
y+31248-8-4-2-1
y-2-115-11-7-5-4

e) xy-x+y=6

<=> x(y-1)+(y-1)=5

<=> (y-1)(x+1)=5

Vì x, y nguyên => y-1; x+1 nguyên => x+1; y-1 thuộc Ư (5)={-5;-1;1;5}

Ta có bảng

x+1-5-115
x-6-204
y-1-1-551
y0-462
7 tháng 3 2020

dễ như thế mà phải hỏi là sao hả!

1. Tìm những cặp số (x,y) thoả mãn pt: a) x² - 4x +y - 6√(y) + 13 = 0 b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 4....
Đọc tiếp

1. Tìm những cặp số (x,y) thoả mãn pt: 
a) x² - 4x +y - 6√(y) + 13 = 0 
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24 
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60 
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27 
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12. 
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441 
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố 
10. Viết số 100 thành tổng các số nguyên tố khác nhau 
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)! 
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35 
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng 
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương) 
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x 
16. a) CM x² + y² = 7z² 
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ

0
1. Tìm những cặp số (x,y) thoả mãn pt: a) x² - 4x +y - 6√(y) + 13 = 0 b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 4....
Đọc tiếp

1. Tìm những cặp số (x,y) thoả mãn pt: 
a) x² - 4x +y - 6√(y) + 13 = 0 
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24 
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60 
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27 
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12. 
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441 
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố 
10. Viết số 100 thành tổng các số nguyên tố khác nhau 
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)! 
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35 
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng 
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương) 
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x 
16. a) CM x² + y² = 7z² 
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ

0

\(a,12⋮x-1\)

\(x-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)

Ta lập bảng xét giá trị 

x - 1             1          -1            2         -2           3          -3          4          -4          12            -12

x                   2            0            3        -1          4          -2           5         -3           13            -11

\(c,x+15⋮x+3\)

\(x+3+12⋮x+3\)

\(12⋮x+3\)

Tự lập bảng , lười ~~~

\(d,\left(x+1\right)\left(y-1\right)=3\)

Ta lập bảng 

x+11-13-3
y-13-31-1
x202-4
y4-220

i, Theo bài ra ta có : ( olm thiếu dấu và == nên trình bày kiủ nài )

\(x⋮10,x⋮12,x⋮15\)và \(100< x< 150\)

Gợi ý : Phân tích thừa số nguyên tố r xét ''BC'' ( chắc là BC ) 

:>> Hc tốt 

19 tháng 11 2021

bạn cho như thế này lm sao giải hết cho bn đc 

4 tháng 3 2020

a,\(x+1\inƯ\left(6\right)\)

\(=>x+1\in\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

\(=>x\in\left\{-7;-4;-3;-2;0;1;2;5\right\}\)

b,\(\left(4x+3\right).\left(x-2\right)=0\)

\(=>\orbr{\begin{cases}4x+3=0\\x-2=0\end{cases}=>\orbr{\begin{cases}4x=-3\\x=2\end{cases}}}\)

\(=>\orbr{\begin{cases}x=\frac{-3}{4}\\x=2\end{cases}}\)

c,\(\left(15x+8\right).\left(12x-1\right)=0\)

\(=>\orbr{\begin{cases}15x+8=0\\12x-1=0\end{cases}}=>\orbr{\begin{cases}15x=-8\\12x=1\end{cases}}\)

\(=>\orbr{\begin{cases}x=\frac{-8}{15}\\x=\frac{1}{12}\end{cases}}\)

e,\(xy-x+y=6\)

\(=>x.\left(y-1\right)+y-1=5\)

\(=>\left(x+1\right).\left(y-1\right)=5\)

Ta có bảng sau :

tự lập bảng =))

4 tháng 3 2020

d, Bài này chỉ cần lập bảng thôi ạ 

16 tháng 1 2021

c, \(n-1⋮3n+2\Leftrightarrow3n-3⋮3n+2\)

\(\Leftrightarrow3n+2-5⋮3n+2\Leftrightarrow-5⋮3n+2\)

hay \(3n+2\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\)

3n + 21-15-5
3n-1-33-7
n-1/3-11-7/3

Vì n thuộc N => n = { 1 ; -1 }

16 tháng 1 2021

b, hay : \(n-2\inƯ\left(-11\right)=\left\{\pm1;\pm11\right\}\)

n - 21-111-11
n3113-9