K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2020

Đồng thời hay mỗi cái là snt

7 tháng 3 2020

đồng thời

27 tháng 12 2019

. a) Cho (a + 5b) ⁝ 7. Chứng tỏ rằng (10a + b) ⁝ 7 

-Ta có : (a+5b) \(⋮7\)

       \(\Rightarrow10.\left(a+5b\right)⋮7\)

      \(\Rightarrow10a+50b⋮7\)

       \(\Rightarrow\left(10a+b\right)+49b⋮7\)

      \(49b⋮7\Rightarrow\left(10a+b\right)⋮7\left(đpcm\right)\)

27 tháng 12 2019

\((10a + b)⁝7 \)

\(\implies 5(10a + b)\vdots 7\)

\(\implies 5.10a + 5b\vdots 7\)

\(\implies 50a + 5b\vdots 7\)

\(\implies 49a + a + 5b\vdots 7\)

\(\implies 49a + (a + 5b)\vdots 7\)

\(49a\vdots 7 \implies (a +5b) \vdots 7(đpcm)\)

Cám ơn bạnミ★Hoa﹏❣Anh﹏❣Đào﹏❣★彡, mong bạn giải tiếp các câu còn lại nhé.

Cho tam giác ABC, góc A, C cắt nhau tại O, F và H là hình chiếu của O trên BC, AC - hồng trang

22 tháng 11 2015

 do n > 3 => 2^n >= 2^4 chia hết cho 16 => 10a + b chia hết cho 16 

Ta có 2^n có thể có những tân cùng là 2; 4; 6; 8 

TH1 2^n có tận cùng là 2 => n = 4k+1 

=> 10a + b có tận cùng là 2 => b = 2 ( do b < 10) 

ta có 2^n = 10a + 2 => 2( 2^(4k) - 1) = 10a => 2^( 4k) - 1 = 5a 

do 2^(4k) - 1 chia hết cho 3 => 5a chia hết cho 3 => a chia hết cho 3 

=> a.b = a.2 chia hết cho 6 (1) 

TH2 2^n có tận cùng là 4 => n = 4k +2 

=> 2^n = 10a + b có tận cùng là 4 => b = 4( do b <10) 

=> 2^(4k +2) = 10a + 4 => 4.2^(4k) - 4 = 10a 

=> 4(2^4k - 1) = 10 a 

ta có 2 ^4k -1chia hết cho 3 => 10a chia hết cho 3 => a chia hết cho 3 

=> a.b chia hết cho 6 (2) 

Th3 2^n có tận cùng là 8 => n = 4k +3 

TH 3 2^n có tận cùng là 6 => n = 4k 

bằng cách làm tương tự ta luôn có a.b chia hết cho 6

tick cái nha

2 tháng 12 2017

a) x = -6; -5; -4; -3; -2; -1; 0; 1; 2; 3

b) x = -1 ; 0 ; 1;2;3;4;5;6;7;8

c) x = -4 ; -3 ; -2 ; -1 

d) x = -9 ; -8 ; -7 ; -6 ; -5 

3 tháng 4 2019

giải hộ mình vs, tối mình đi hok r