K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2020

y =f(0)=0

y =f(1)=1

y =f(-1)=-1

y =f(3)=3

y =f(-3)=-3

7 tháng 3 2020

Cho hàm số: y =f(x)=x.
Tính: f(0);f(1);f(-1);f(3);f(-3)

           Giải

Ta thay f(0);f(1);f(-1);f(3);f(-3) vào f(x)=x ,ta đc:

f(0)=0

f(1)=1

f(-1)=-1

f(3)=3

f(-3)=-3

20 tháng 7 2021

Bài 1 : làm tương tự với bài 2;3 nhé

Ta có : \(f\left(0\right)=c=2010;f\left(1\right)=a+b+c=2011\)

\(\Rightarrow f\left(1\right)=a+b=1\)

\(f\left(-1\right)=a-b+c=2012\Rightarrow f\left(-1\right)=a-b=2\)

\(\Rightarrow a+b=1;a-b=2\Rightarrow2a=3\Leftrightarrow a=\dfrac{3}{2};b=\dfrac{3}{2}-2=-\dfrac{1}{2}\)

Vậy \(f\left(-2\right)=4a-2b+c=\dfrac{4.3}{2}-2\left(-\dfrac{1}{2}\right)+2010=6+1+2010=2017\)

18 tháng 1 2018

Chọn C.

Dựa vào đồ thị hàm số f ' ( x )  suy ra BBT của hàm số y = f(x)

 

Khẳng định 1, 2, 5 đúng, khẳng định 4 sai.

Xét khẳng định 3: Ta có:

f ( 3 ) + f ( 2 ) = f ( 0 ) + f ( 1 ) ⇒ f ( 3 ) - f ( 0 ) = f ( 1 ) - f ( 2 ) > 0  

Do đó f ( 3 ) > f ( 0 ) ⇒  Vậy khẳng định 3 đúng.

5 tháng 1 2018

6 tháng 12 2021

      Giải:

Bài 1: lần lượt thay các giá trị của x, ta có:

_Y=f(-1)= -5.(-1)-1=4

_Y=f(0)= -5.0-1=1

_Y=f(1)= -5.1-1=-6

_Y=f(1/2)= -5.1/2-1=-7/2

 

6 tháng 12 2021

 Bài 2:

 Lần lượt thay các giá trị của x, ta có:

_Y=f(-2)=-2.(-2)+3=7

_Y=f(-1)=-2.(-1)+3=1

_Y=f(0)=-2.0+3=3

_Y=f(-1/2)=-2.(-1/2)+3=4

_Y=f(1/2)=-2.1/2+3=2

6 tháng 12 2016

1.

y=f(-1)=3*(-1)-2=-5

y=f(0)=3*0-2=-2

y=f(-2)=3*(-2)-2=-8

y=f(3)=3*3-2=7

Câu 2,3a làm tương tự,chỉ việc thay f(x) thôi.

3b

Khi y=5 =>5=5-2*x=>2*x=0=> x=0

Khi y=3=>3=5-2*x=>2*x=2=>x=1

Khi y=-1=>-1=5-2*x=>2*x=6=>x=3

14 tháng 12 2016

f(-1)=3.1-2=3-2=1

f(0)=3.0-2=0-2=-2

f(-2)=3.(-2)-2=-6-2=-8

f(3)=3.3-2=9-2=7

NV
20 tháng 8 2021

\(y'=2f'\left(x\right).f'\left(f\left(x\right)\right)-2f'\left(x\right).f\left(x\right)\)

\(y'=0\Rightarrow\left[{}\begin{matrix}f'\left(x\right)=0\\f'\left(f\left(x\right)\right)=f\left(x\right)\end{matrix}\right.\)

Từ đồ thị ta có \(f'\left(x\right)=0\Rightarrow x=x_1\) với \(-4< x_1< 0\)

Xét phương trình \(f'\left(f\left(x\right)\right)=f\left(x\right)\), đặt \(f\left(x\right)=t\Rightarrow f'\left(t\right)=t\)

Vẽ đường thẳng \(y=t\) (màu đỏ) lên cùng đồ thị \(y=f'\left(t\right)\) như hình vẽ:

undefined

Ta thấy 2 đồ thị cắt nhau tại 3 điểm: \(t=\left\{-4;1;4\right\}\)

\(\Rightarrow\left[{}\begin{matrix}f\left(x\right)=-4\\f\left(x\right)=1\\f\left(x\right)=4\end{matrix}\right.\) (1)

Mặt khác từ đồ thị \(f'\left(x\right)\) và \(f\left(0\right)=-4\) ta được BBT của \(f\left(x\right)\) có dạng:

undefined

Từ đó ta thấy các đường thẳng \(y=k\ge-4\) luôn cắt \(y=f\left(x\right)\) tại 2 điểm phân biệt

\(\Rightarrow\) Hệ (1) có 6 nghiệm phân biệt (trong đó 3 nghiệm nhỏ hơn \(x_1\) và 3 nghiệm lớn hơn \(x_1\))

Từ đó ta có dấu của y' như sau:

undefined

Có 3 lần y' đổi dấu từ dương sang âm nên hàm có 3 cực đại

Chọn A

27 tháng 12 2019

Chọn D

Từ đồ thị của hàm số y = f'(x) ta suy ra bảng biến thiên của hàm số y = f(x) trên đoạn như sau:

Từ bảng biến thiên, ta có nhận xét sau: 

Ta lại có: f(0) + f(1) - 2f(2) = f(4). - f(3)