tìm x biết:\(\frac{x^2}{-8}=\frac{27}{x}\)(x khác 0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/x + y/4 = 1/8
=> 2/x = 1/8 - y/4
=> 2/x = 1-2y/8
=> x(1 - 2y) = 16
x | -1 | 1 | -2 | 2 | -4 | 4 | -16 | 16 | 8 | -8 |
1-2y | -16 | 16 | -8 | 8 | -4 | 4 | -1 | 1 | 2 | -2 |
y | loại | loại | loại | loại | loại | loại | 1 | 0 | loại | loại |
Ta có: \(\frac{x-y}{3}=\frac{2x+y}{8}=\frac{\left(2x+y\right)-\left(x-y\right)}{8-3}=\frac{x+2y}{5}=\frac{x+2y}{x}\)
\(\Rightarrow x=5\)
Thay \(x=5\)vào biểu thức \(\frac{x-y}{3}=\frac{x+2y}{x}\)ta được
\(\frac{5-y}{3}=\frac{5+2y}{5}\)
\(\Rightarrow5\left(5-y\right)=3\left(5+2y\right)\)
\(\Rightarrow25-5y=15+6y\)
\(\Rightarrow5y+6y=25-15\)
\(\Rightarrow11y=10\)\(\Rightarrow y=\frac{10}{11}\)
Vậy \(x=5\)và \(y=\frac{10}{11}\)
a, => 3.(x-1).27.(x-1) = 8.2
=> 81.(x-1)^2 = 16
=> (x-1)^2 = 16/81
=> x-1=-4/9 hoặc x-1=4/9
=> x=5/9 hoặc x=13/9
b, => \(\sqrt{x}.\left(\sqrt{x}-3\right)\) = 0
=> \(\sqrt{x}=0\)hoặc \(\sqrt{x}-3=0\)
=> x=0 hoặc x=9
Tk mk nha
Khi nhân với phân số 1/9 . 27x sẽ giảm xuống 9 lần còn 3x
Vậy ta biết được 27x:9=3x
Đổi 9 bằng 32 vậy ta có biểu thức tìm x
27x=32+3x
33 =32+3x
3 = x+2
3-2 = x
1 = x
Dùng tính chất tỉ lệ thức:
- x+y+z = 0
\(\frac{x}{\left(y+z+1\right)}=\frac{y}{\left(x+z+1\right)}=\frac{z}{\left(x+y-2\right)}=0\Rightarrow x=y=z=0\)
Áp dụng tính chất tỉ lệ thức:
\(x+y+z=\frac{x}{\left(y+z+1\right)}=\frac{y}{\left(x+z+1\right)}=\frac{z}{\left(x+y-2\right)}=\left(\frac{x+y+z}{2x+2y+2z}\right)=\frac{1}{2}\)
=> x+y+z = \(\frac{1}{2}\)
+) \(2x=y+z+1=\frac{1}{2}-x+1\Rightarrow x=\frac{1}{2}\)
+) \(2y=x+z+1=\frac{1}{2}-y+1\Rightarrow y=\frac{1}{2}\)
+) \(z=\frac{1}{2}-\left(x+y\right)=\frac{1}{2}-1=\frac{-1}{2}\)
TA CÓ: \(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{z+y+1+x+z+1+x+y-2}=\frac{1.\left(x+y+z\right)}{\left(1+1-2\right)+2x+2y+2z}\)
\(=\frac{1.\left(x+y+z\right)}{0+2.\left(x+y+z\right)}=\frac{1.\left(x+y+z\right)}{2.\left(x+y+z\right)}=\frac{1}{2}\)
\(\Rightarrow x+y+z=\frac{1}{2}\)
\(\Rightarrow\frac{x}{z+y+1}=\frac{1}{2}\)\(\Rightarrow2x=z+y+1\)\(\Rightarrow3x=x+z+y+1\)\(\Rightarrow3x=\frac{1}{2}+1\Rightarrow3x=\frac{3}{2}\Rightarrow x=\frac{1}{2}\)
\(\frac{y}{x+z+1}=\frac{1}{2}\)\(\Rightarrow2y=x+z+1\Rightarrow3y=y+x+z+1\Rightarrow3y=\frac{1}{2}+1=\frac{3}{2}\Rightarrow y=\frac{1}{2}\)
\(\frac{z}{x+y-2}=\frac{1}{2}\)\(\Rightarrow2z=x+y-2\Rightarrow3z=x+y+z-2\Rightarrow3z=\frac{1}{2}-2=\frac{-3}{2}\Rightarrow z=\frac{-1}{2}\)
VẬY X= 1/2; Y= 1/2 ; Z= -1/2
CHÚC BN HỌC TỐT!!!!!!
x2/ -8 = 27/x
x2. x = -8.27
x3 = -216
x3= -63
=> x= -6
Vậy....
\(\frac{x^2}{-8}=\frac{27}{x}\)
\(\Rightarrow x^2.x=\left(-8\right).27\)
\(x^3=-216\)
\(x^3=\left(-6\right)^3\)
\(x=-6\)
Vậy \(x=-6\)