\(CMR:\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ( với a,b thuộc Q )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a ) CM : \(a^4+b^4\ge a^3b+b^3a\)
Giả sử điều cần c/m là đúng
\(\Rightarrow a^4+b^4-a^3b-b^3a\ge0\)
\(\Rightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Rightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)
\(\Rightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
Ta có : \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\a^2+ab+b^2=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\end{matrix}\right.\)
\(\Rightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
\(\Rightarrow a^4+b^4-a^3b-b^3a\ge0\)
\(\Rightarrow a^4+b^4\ge a^3b+b^3a\)
\(\Rightarrow2\left(a^4+b^4\right)\ge a^4+a^3b+b^4+b^3a\)
\(\Rightarrow2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
\(\left(đpcm\right)\)
b ) \(\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
\(=a^4+a^3b+a^3c+b^3a+b^4+b^3c+c^3a+c^3b+c^4\)
\(=\left(a^4+b^4+c^4\right)+\left(a^3b+b^3a\right)+\left(b^3c+c^3b\right)+\left(a^3c+c^3a\right)\)
CMTT như a ) : \(\left\{{}\begin{matrix}a^4+b^4\ge a^3b+b^3a\\b^4+c^4\ge b^3c+c^3b\\a^4+c^4\ge a^3c+c^3a\end{matrix}\right.\)
\(\Rightarrow2\left(a^4+b^4+c^4\right)\ge a^3b+b^3a+b^3c+c^3b+a^3c+c^3a\)
\(\Rightarrow3\left(a^4+b^4+c^4\right)\ge a^4+b^4+c^4+a^3b+b^3a+b^3c+c^3b+a^3c+c^3a\)
\(\Rightarrow3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta biến đổi: \(4\left(a^3+b^3\right)-\left(a+b\right)^3+4\left(b^3+c^3\right)-\left(b+c\right)^3+4\left(c^3+a^3\right)-\left(c+a\right)^3\ge0\)
Xét: \(4\left(a^3+b^3\right)-\left(a+b\right)^3=\left(a+b\right)\left[4\left(a^2-ab+b^2\right)-\left(a+b\right)^2\right]\)
\(=3\left(x+b\right)\left(a-b\right)^2\ge0\)
Tương tự với: \(4\left(b^3+c^3\right)-\left(b+c\right)^3\) và \(4\left(c^3+a^3\right)-\left(c+a\right)^3\)
Ta suy ra đpcm.
Đẳng thức xảy ra \(\Leftrightarrow a=b=c\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(2\left(a^3+b^3\right)\ge\left(a+b\right)\left(a^2+b^2\right)\)
\(\Rightarrow2\left(a+b\right)\left(a^2-ab+b^2\right)\ge\left(a+b\right)\left(a^2+b^2\right)\)
\(\Rightarrow2\left(a^2-ab+b^2\right)\ge a^2+b^2\)
\(\Rightarrow2a^2-2ab+2b^2\ge a^2+b^2\)
\(\Rightarrow\left(a^2+b^2-2ab\right)+a^2+b^2\ge a^2+b^2\)
\(\Rightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta chứng minh bổ đề: Với \(|x|\ge2\)thì \(2x^2-4x\ge0\)
Với \(x\le-2\)thì nó đúng
Xét \(x\ge2\)thì ta có:
\(2x\left(x-2\right)\ge0\)(đúng)
Quay lại bài toán:
\(\left(a^2+1\right)\left(b^2+1\right)\ge\left(a+b\right)\left(ab+1\right)+5\)
\(\Leftrightarrow4a^2b^2+4a^2+4b^2-4a^2b-4ab^2-4a-4b-16\ge0\)
\(\Rightarrow VT=\left(a^2b^2-4a^2b+4a^2\right)+\left(a^2b^2-4b^2a+4b^2\right)+\left(a^2b^2-16\right)+\left(\frac{a^2b^2}{2}-4a\right)+\left(\frac{a^2b^2}{2}-4b\right)\)
\(\ge\left(ab-2a\right)^2+\left(ab-2b\right)^2+\left(a^2b^2-16\right)+\left(2a^2-4a\right)+\left(2b^2-4b\right)\ge0\)
Vậy ta có ĐPCM
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 : Áp dụng BĐT trong tam giác ta có :
\(\left\{{}\begin{matrix}a< b+c\\b< c+a\\c< a+b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^2-\left(b-c\right)^2\le a^2\\b^2-\left(c-a\right)^2\le b^2\\c^2-\left(a-b\right)^2\le c^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(a+b-c\right)\left(a-b+c\right)\le a^2\\\left(b-c+a\right)\left(b+c-a\right)\le b^2\\\left(c-a+b\right)\left(c+a-b\right)\le c^2\end{matrix}\right.\)
Nhân từng vế BĐT ta được :
\(\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\le abc\) ( đpcm )
Bài 2 : Theo BĐT Cô - si ta có :
\(\left\{{}\begin{matrix}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ca}\end{matrix}\right.\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
\(\Rightarrow\dfrac{1}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge abc\) (1)
Theo câu 1 ta lại có :
\(abc\ge\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\)
\(\Leftrightarrow abc\ge\sqrt{abc\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{1}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\sqrt{abc\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng bất đẳng thức Côsi ta có:
\("a+b+c""ab+bc+ac"\le\frac{8}{9}"a+b""b+c""c+a"\)
\(\Leftrightarrow a"b-c"^2+b"c-a"^2+c"a-b"^2\ge0\)luôn đúng
P/s: Máy mk lác dấu ngoặc đơn rồi nên dùng tạm dấu ngoặc kép thông cảm cho mk nhé
chủ acc cũ gà thật:vv
Xét \(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)
Ta có : \( \left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(\Leftrightarrow\left(\left|a\right|+\left|b\right|\right)^2\ge\left(\left|a+b\right|\right)^2\)
\(\Leftrightarrow\left(\left|a\right|\right)^2+2\left|ab\right|+\left(\left|b\right|\right)^2\ge\left(\left|a\right|\right)^2+2ab+\left(\left|b\right|\right)^2\)
\(\Leftrightarrow\left|ab\right|\ge ab\) ( Luôn đúng )
Dấu ""=" xảy ra \(\Leftrightarrow a\cdot b\ge0\)
Với mọi a,b \(\in\)Q, ta luôn có
a \(\le|a|\) và -a \(\le|a|\)
b\(\le|b|\)và - b \(\le|b|\)
suy ra a+b \(\le|a|\)+\(|b|\) và -a-b \(\le|a|\)+\(|b|\)
vậy \(|a+b|\)\(\le|a|\)+\(|b|\)
dấu "=" khi và chỉ khi ab \(\ge\)0