Cho số phức z thoả mãn:
Giá trị lớn nhất của biểu thức P = |z - 5 - 2i| bằng
A. √2 + 5√3 B. √2 + 3√5
C. √5 + 2√3 D. √5 + 3√2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Gọi A và B lần lượt là điểm biểu diễn của 3iz và -2w
A, B lần lượt thuộc các đường tròn tâm O(9;15) bán kính bằng 9 và đường tròn tâm I(4;-8) bán kính bằng 4
OI= 554
Khi đó
Yêu cầu bài toán trở thành tìm A B m a x
Gọi A và B lần lượt là điểm biểu diễn của 3iz và -2w => A, B lần lượt thuộc các đường tròn tâm O(9;15) bán kính bằng 9 và đường tròn tâm I(4;-8) bán kính bằng 4 ⇒ O I = 554
Đáp án D
Đáp án D
Cách 1
· Đặt biểu diễn cho số phức z.
· Từ giả thiết, ta có M thuộc đường trung trực của đoạn EF và P=AM+BM+CM
· Ta chứng minh điểm M chính là hình chiếu vuông góc của B lên đường thẳng ∆ .
- Với M’ tùy ý thuộc ∆ , M’ khác M. Gọi A’ là điểm đối xứng của A qua ∆ . Nhận thấy rằng ba điểm A’, M, C thẳng hàng.
- Ta có
Mà
Lại có Do đó
Cách 2
· Gọi Từ giả thiết , dẫn đến y=x .
Khi đó z=x+xi.
·
· Sử dụng bất đẳng thức
Dấu đẳng thức xảy ra khi và chỉ khi . Ta có
Dấu đẳng thức xảy ra khi và chỉ khi
· Mặt khác
Dấu đẳng thức xảy ra khi và chỉ khi x= 7 2
· Từ hai trường hợp trên, ta thấy, giá trị nhỏ nhất của P là .
Khi đó a+b=3.
A. √2 + 5√3