K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2020

Từ phương trình, ta suy ra:

\(\frac{y^2-2y}{y^2-4}-\frac{3y+6}{y^2-4}=\frac{y^2+8}{y^2-4}\)

\(\Leftrightarrow\frac{y^2-5y-6}{y^2-4}=\frac{y^2+8}{y^2-4}\)

\(\Leftrightarrow\frac{-5y-14}{y^2-4}=0\)

\(\Leftrightarrow-5y-14=0\)(với ĐKXĐ \(x\ne\pm2\))

\(\Leftrightarrow-5y=14\)

\(\Leftrightarrow y=\frac{-14}{5}\)(phù hợp với ĐKXĐ)

Vậy phương trình có nghiệm duy nhất y=-14/5

6 tháng 3 2020

\(\frac{y}{y+2}-\frac{3}{y-2}=\frac{y^2+8}{y^2-4}\left(y\ne\pm2\right)\)

\(\Leftrightarrow\frac{y\left(y-2\right)}{\left(y-2\right)\left(y+3\right)}-\frac{3\left(y+2\right)}{\left(y-2\right)\left(y+2\right)}-\frac{y^2+8}{\left(y-2\right)\left(y+2\right)}=0\)

\(\Leftrightarrow\frac{y^2-2y}{\left(y-2\right)\left(y+2\right)}-\frac{3y+6}{\left(y-2\right)\left(y+2\right)}-\frac{y^2+8}{\left(y-2\right)\left(y+2\right)}=0\)

\(\Rightarrow y^2-2y-3y-6-y^2-8=0\)

\(\Leftrightarrow-5y-14=0\)

<=> -5y=14

<=> x=-14/5

5 tháng 5 2017

Câu 2/

Điều kiện xác định b tự làm nhé:

\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)

\(\Leftrightarrow x^4-25x^2+150=0\)

\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)

Tới đây b làm tiếp nhé.

6 tháng 5 2017

a. ĐK: \(\frac{2x-1}{y+2}\ge0\)

Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)

\(\)Dấu bằng xảy ra khi  \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\) 

Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)

b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)

\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)

\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)

25 tháng 5 2020

ĐK: \(x+y\ne0;x\ge2\)

\(\hept{\begin{cases}\frac{4}{x+y}+3\sqrt{4x-8}=14\\\frac{5-x-y}{x+y}-2\sqrt{x-2}=\frac{-5}{2}\end{cases}}\)

<=> \(\hept{\begin{cases}\frac{4}{x+y}+6\sqrt{x-2}=14\\\frac{5}{x+y}-2\sqrt{x-2}=\frac{-3}{2}\end{cases}}\)

<=> \(\hept{\begin{cases}\frac{4}{x+y}+6\sqrt{x-2}=14\\\frac{5}{x+y}-2\sqrt{x-2}=\frac{-3}{2}\end{cases}}\)

Đặt: \(\frac{1}{x+y}=u\ne0;\sqrt{x-2}=v\ge0\)

ta có hệ: \(\hept{\begin{cases}4u+6v=14\\5u-2v=\frac{-3}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}u=\frac{1}{2}\\v=2\end{cases}}\)thỏa mãn

khi đó ta có: \(\hept{\begin{cases}\frac{1}{x+y}=\frac{1}{2}\\\sqrt{x-2}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-4\\x=6\end{cases}}\)thỏa mãn

Vậy:...

8 tháng 2 2018

Ta có :

\(\hept{\begin{cases}\frac{1}{x+y-2}+\frac{x+2y+4}{x+2y}=3\\\frac{x+y}{x+y-2}-\frac{8}{x+2y}=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+y-2}+1+\frac{4}{x+2y}=3\\\frac{x+y}{x+y-2}-1-\frac{8}{x+2y}=1-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+y-2}+\frac{4}{x+2y}=2\\\frac{2}{x+y-2}-\frac{8}{x+2y}=0\end{cases}}\)

Đặt \(\frac{1}{x+y-2}=a;\frac{1}{x+2y}=b\)ta có :

\(\hept{\begin{cases}a+4b=2\\2a-8b=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=2-4b\\2\left(2-4b\right)-8b=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=2-4b\\4-8b-8b=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=2-4b\\16b=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=2-1=1\\b=\frac{1}{4}\end{cases}}\)

Vậy phương trình có nghiệm \(\left(x;y\right)=\left(1;\frac{1}{4}\right)\)

7 tháng 3 2017

\(\frac{y-1}{y-2}-\frac{5}{y+2}=\frac{12}{y^2-4}+1\)

 \(\frac{\left(y-1\right)\left(y+2\right)}{y^2-4}-\frac{5\left(y-2\right)}{y^2-4}=\frac{12}{y^2-4}+\frac{y^2-4}{y^2-4}\)

\(\frac{y^2+y-2-5y+10}{y^2-4}=\frac{y^2+8}{y^2-4}\)

\(y^2-4y-8=y^2+8\)

 \(y^2-4y-8-y^2-8=0\)

 \(-4y-16=0\)

\(\Rightarrow y=-4\)

            Vậy y=-4

7 tháng 3 2017

\(\Leftrightarrow\frac{y-1}{y-2}-\frac{5}{y+2}=\frac{12}{\left(y-2\right)\left(y+2\right)}+1\)

\(\Leftrightarrow\frac{\left(y-1\right)\left(y+2\right)-5\left(y-2\right)-12+1\left(y-2\right)\left(y+2\right)}{\left(y-2\right)\left(y+2\right)}=0\)

\(\Leftrightarrow\frac{y^2+2y-y-2-5y+10-12+y^2+2y-2y-4}{\left(y-2\right)\left(y+2\right)}\)

Rồi bạn làm tiếp nha

9 tháng 6 2016

phương trình đầu tương đương với:

\(x\left(x^2+y^2\right)=y^4\left(y^2+1\right)\)

\(\Leftrightarrow x^3+xy^2-y^6-y^4=0\)

\(\Leftrightarrow\left(x^3-y^6\right)+\left(xy^2-y^4\right)=0\)

\(\Leftrightarrow\left(x-y^2\right)\left(x^2+xy^2+y^4\right)+y^2\left(x-y^2\right)=0\)

\(\Leftrightarrow\left(x-y^2\right)\left(x^2+xy^2+y^4+y^2\right)=0\)

TH1: \(x-y^2=0\Rightarrow x=y^2\) thay vào pt thứ hai ta tìm được nghiệm

      \(\sqrt{4y^2+5}+\sqrt{y^2+8}=6\)

       \(4y^2+5+y^2+8+2\sqrt{\left(4y^2+5\right)\left(y^2+8\right)}=36\)

       \(5y^2+13+2\sqrt{\left(4y^2+5\right)\left(y^2+8\right)}=36\)

       \(2\sqrt{\left(4y^2+5\right)\left(y^2+8\right)}=23-5y^2\)

        bình phương hai vế tiếp rồi đưa về pt trùng phương, bạn tự giải tiếp nhé

TH2: \(x^2+xy^2+y^4+y^2=0\), coi x là ẩn, tìm x theo y ta có 

        \(\Delta=y^4-4\left(y^4+y^2\right)=-3y^4-y^2\)

        Pt có nghiệm khi y =0, thay vào ta có từ pt thứ nhất suy ra x =0, nhưng pt thứ hai không thỏa mãn