Chứng minh rằng :
a) với mọi n thuộc N và n lớn hơn 1 thì số có dạng n6–n4+2n3+n2 không phải là số chính phương
b) với mọi n thuộc N thì n^5 và n lun có chữ số tận cùng giống nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Coi chữ số tận cùng của n là h
Với n lẻ :
\(n^5=n^4.n=\left(...1\right).n=\left(..1\right)\left(...a\right)=\left(...a\right)\)
Tương tự với n chẵn :
\(n^5=n^4.n=\left(...6\right).n=\left(..6\right)\left(...a\right)=\left(...a\right)\)
Vậy ...
Không hiểu nổi @trần thùy dung CTV viết cái gì nữa:
\(A=n^5-n\)
A chia hết cho 5 với mọi n thuộc N (*)
\(A=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)=> A chia hết cho 2 (**)
(*)&(**)=> A chia hết cho 10=> A tận cùng là 0 vậy n^5 và n có số tận cùng = nhau=> dpcm
p/s: (*) nếu cần có thể c/m nhưng nó thuộc t/c do vậy ko cần c/m nữa
Giải
Ta có:n5 - n = n(n4 - 1)
= n(n2 - 1)(n2 - 4 + 5)
= n(n2 - 1)(n2 - 4) + 5n(n2 - 1)
= (n - 2)(n - 1)n(n + 1)(n + 2) + 5(n - 1)n(n + 1)
Ta thấy (n - 2)(n - 1)n(n + 1)(n + 2) là 5 số tự nhiên liên tiếp nên sẽ đồng thời chia hết cho 2 và cho 5. Hay là (n - 2)(n - 1)n(n + 1)(n + 2) sẽ chia hết cho 10 (1)
Ta lại co (n - 1)n(n + 1) là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 2
=> 5(n - 1)n(n + 1) chia hết cho 10 (2)
Từ (1) và (2) => n5 - n chia hết cho 10 hay là co tận cùng là 0.
Vậy n5 và n luôn có chữ số tận cùng giống nhau.\(\left(đpcm\right)\)
xét từng chữ số tận cùng của n
VD Với n có tận cùng là 1 thì n^5 có tận cùng là 1
Với n có tận cùng là 2 thì n^4 có tận cùng là 6.Suy ra n^5 có tận cùng là 2
Với n có tận cùng là 3 thìn^4 có tận cùng là 1.Suy ra n^5 có tận cùng là 3
........
Theo mình là như thế
xét từng chữ số tận cùng của n
VD Với n có tận cùng là 1 thì n^5 có tận cùng là 1
Với n có tận cùng là 2 thì n^4 có tận cùng là 6.Suy ra n^5 có tận cùng là 2
Với n có tận cùng là 3 thìn^4 có tận cùng là 1.Suy ra n^5 có tận cùng là 3
........
Tự tìm nha
a) Xét hiệu : \(n^5-n\)
Đặt : \(A\text{=}n^5-n\)
Ta có : \(A\text{=}n.\left(n^4-1\right)\text{=}n.\left(n^2-1\right)\left(n^2+1\right)\)
\(A\text{=}n.\left(n+1\right).\left(n-1\right).\left(n^2+1\right)\)
Vì : \(n.\left(n+1\right)\) là tích hai số tự nhiên liên tiếp .
\(\Rightarrow A⋮2\)
Ta có : \(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2+1\right)\)
\(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2-4+5\right)\)
\(A\text{=}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n.\left(n+1\right)\left(n-1\right)\)
Ta thấy : \(\left\{{}\begin{matrix}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\\5n\left(n-1\right)\left(n+1\right)⋮5\end{matrix}\right.\) vì tích ở trên là tích của 5 số liên tiếp nên chia hết cho 5.
Do đó : \(A⋮10\)
\(\Rightarrow A\) có chữ số tận cùng là 0.
Suy ra : đpcm.
b) Vì \(n⋮3̸\) nên n có dạng : \(3k+1hoặc3k+2\left(k\in N\right)\)
Với : n= 3k+1
Thì : \(n^2\text{=}9k^2+6k+1\)
Do đó : \(n^2\) chia 3 dư 1.
Với : n=3k+2
Thì : \(n^2\text{=}9k^2+12k+4\text{=}9k^2+12k+3+1\)
Do đó : \(n^2\) chia 3 dư 1.
Suy ra : đpcm.
A = n^5 - n = n(n^4-1) = n(n^2 +1)(n^2 -1) =n(n^2 +1)(n+1)(n-1)
* n(n +1) chia hết cho 2 => A chia hết cho 2.
*cm: A chia hết cho 5.
n chia hết cho 5 => A chia hết cho 5.
n không chia hết cho 5 => n = 5k + r (với r =1,2,3,4)
- r = 1 => n - 1 = 5k chia hết cho 5 => A chia hết cho 5
- r = 2 => n^2 + 1 = 25k^2 + 20k + 5 chia hết cho 5 => A chia hết cho 5
- r = 3 => n^2 + 1 = 25k^2 + 30k + 10 chia hết cho 5 => A chia hết cho 5
- r = 4 => n +1 = 5k + 5 chia hết cho 5 => A chia hết cho 5
=> A luôn chia hết cho 5
2,5 nguyên tố cùng nhau => A chia hết cho 2.5=10 => A tận cùng là 0
=> đpcm
Nói trước mình copy
n^5-n=n(n^4-1)=n(n²-1)(n²-4+5)
=(n-2)(n-1)n(n+1)(n+2)+5(n-1)n(n+1) (a)
*Vì (n-2)(n-1)n(n+1)(n+2) là tíc 5 số tự nhiên ltiếp nên chia hết cho 2,5 nên chia hết cho 10
( vì (2,5)=1) (b)
*Vì (n-1)n(n+1) là tích 3 số nguyên ltiếp nên chia hết cho 2 =>5(n-1)n(n+1) chia hết cho 10 (c)
Từ (a),(b),(c)=>n^5-n chia hết cho 10 nên n^5 và n có cùng dư khi chia cho 10
Đặt dư là r(r thuộc N,0≤r≤9) ta có:n^5=10k+r,n=10h+r đều có tận cùng là r (đpcm)
b/ Nếu n^5 và n giống chữ số tận cùng thì n^5-n tận cùng là 0 chia hết cho 10.Ta cần đi CM n^5-n chia hết 10
\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+2n\left(n-1\right)\left(n+1\right)\)
Có \(n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\&2\).Mà 5 và 2 là 2 số nguyên tố cùng nhau nên \(n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮10\)
Có \(5n\left(n-1\right)\left(n+1\right)⋮5\&2\).Mà 5,2 nguyên tố cùng nhau nên \(5n\left(n-1\right)\left(n+1\right)⋮10\)
Từ đó có n^5-n chia hết cho 10 suy ra ĐPCM