Tam giác A'B'C' đồng dạng với tam giác A''B''C'' theo tỉ số đồng dạng k1. Tam giác A''B''C'' đồng dạng với tam giác ABC theo tỉ số đồng dạng k2. Tam giác A'B'C' đồng dạng với tam giác ABC theo tỉ số nào?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: Xét ΔBAH vuông tại H và ΔACH vuông tại H có
\(\widehat{BAH}=\widehat{ACH}\)
DO đó: ΔBAH\(\sim\)ΔACH
a) Do tam giác \(ABC\) cân tại A nên:
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\) và \(AB=AC\)
Xét \(\Delta BEC\) vuông tại E và \(\Delta CFB\) vuông tại F ta có:
\(\widehat{ECB}=\widehat{FBC}\) (cmt)
Cạnh BC chung
\(\Rightarrow\Delta BEC=\Delta CFB\) (cạnh huyền, góc nhọn)
b) Do \(\Delta BEC=\Delta CFB\) (cmt) \(\Rightarrow EB=FC\) (hai cạnh tương ứng)
Ta lại có: \(AB=AC\)
\(\Rightarrow AB-FB=AC-EC\) hay \(AF=AE\)
Xét \(\Delta AHF\) vuông tại F và \(\Delta AHE\) vuông tại E ta có:
\(AF=AE\left(cmt\right)\)
Cạnh AH chung
\(\Rightarrow\Delta AHF=\Delta AHE\) (cạnh huyền, cạnh góc vuông)
-Lưu ý: Chỉ mang tính chất tóm tắt lại bài làm, bạn không nên trình bày theo!
a. △AHB∼△CAB (g-g) ; △CHA∼CAB (g-g) \(\Rightarrow\)△AHB∼△CHA (t/c bắc cầu)
b. \(\widehat{ABI}=\widehat{CBD}\) (BD là tia phân giác của góc ABC) ; \(\widehat{BAI}=\widehat{BCD}\)
(△AHB∼△CHA) \(\Rightarrow\)△BIA∼△BDC (g-g)
c. △BAD∼△HBI (g-g) \(\Rightarrow\widehat{ADB}=\widehat{BIH}=\widehat{AID}\)
\(\Rightarrow\)△AID cân tại A.
d. \(\dfrac{BI}{BD}=\dfrac{BA}{BC}\) (BIA∼△BDC) mà \(\dfrac{BA}{BC}=\dfrac{DA}{DC}\) (BD là phân giác của △ABC)
\(\Rightarrow\dfrac{BI}{BD}=\dfrac{AD}{CD}\Rightarrow AD.BD=BI.DC\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA∼ΔABC
b: Xét ΔHCA vuôg tại H và ΔACB vuông tại A có
góc C chung
Do đó: ΔHCA∼ΔACB
\(\Delta ABC\)có \(\widehat{A}=60^o\)\(\Rightarrow\widehat{B}+\widehat{C}=120^o\)
mà \(\widehat{B}=3.\widehat{C}\)\(\Rightarrow4.\widehat{C}=120^o\)\(\Rightarrow\widehat{C}=30^o\)\(\Rightarrow\widehat{B}=90^o\)
\(\Rightarrow\Delta ABC\)vuông tại B
Giải
a ) Xét tam giác ABC và tam giác A'B'C' có :
\(\widehat{A}=\widehat{A'}\left(GT\right)\)
AB = A'B' ( GT )
AC = A'C' ( GT)
=> Tam giác ABC = Tam giác A'B'C' ( c.g.c)
b ) Xét tam giác AMC và tam giác A'M'C' có :
\(\widehat{A}=\widehat{A'}\)
AC = A'C' ( GT )
AM = A'M' ( GT )
=> tam giác AMC = tam giác A'M'C ( c.g.c )
c ) Vì BM + AM = AB ( vì M nằm giữa A và B )
B'M + A'M' = A'B' ( vì M' nằm giữa A' và B ' )
Mà A'M' = AM , AB = A'B nên BM = B'M'
Có \(\frac{A'B'}{A''B''}=k_1\Leftrightarrow\frac{A'B'}{k_1}=A''B''\left(1\right),\frac{A''B''}{AB}=k_2\Leftrightarrow AB.k_2=A''B''\left(2\right)\)
(1)=(2) có \(\frac{A'B'}{k_1}=AB.k_2\Leftrightarrow\frac{A'B'}{AB}=k_1.k_2\)( tỉ số đồng dạng)