x,y,z>=0
x+y+z=3
\(\sqrt{x+1}+\sqrt{y+1}+\sqrt{z+1}\)
GTNN, GTLN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, Gọi biểu thức đề ra là B
=> Theo bđt cô si ta có : \(B\ge3\sqrt[3]{\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{z^2}\right)\left(z^2+\frac{1}{x^2}\right)}\)
=> \(B\ge3\sqrt[3]{2\cdot\frac{x}{y}\cdot2\cdot\frac{y}{z}\cdot2\cdot\frac{z}{x}}=3\sqrt[3]{8}=6\)
( Chỗ này là thay \(x^2+\frac{1}{y^2}\ge2\sqrt{\frac{x^2}{y^2}}=2\cdot\frac{x}{y}\) và 2 cái kia tương tự vào )
=> Min B=6
Theo bđt cô si thì ta có : \(\sqrt{\left(x+y\right)\cdot1}\le\frac{x+y+1}{2}\)
\(\sqrt{\left(z+x\right)\cdot1}\le\frac{z+x+1}{2}\)
\(\sqrt{\left(y+z\right)\cdot1}\le\frac{y+z+1}{2}\)
=> Cộng vế theo vế ta được : \(A\le\frac{2\left(x+y+z\right)+3}{2}=\frac{5}{2}\)
Dấu = xảy ra khi : x+y+z=1 và x+y=1 và y+z=1 và x+z=1
=> \(x=y=z=\frac{1}{3}\)
Vậy ...
bài này dễ nhưng bạn phải chứng minh bđt này đã:
\(\frac{1}{a+b+c+d}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\)
với a;b;c;d là các số dương
bạn có thể cm bđt trên bằng cách biến đổi tương đương hoặc cm bđt Schwat (Sơ-vác)
Mình là 1 phần tử đại diện còn lại là hoàn toàn tt nhé
ta có \(\frac{1}{3\sqrt{x}+3\sqrt{y}+2\sqrt{z}}=\frac{1}{2\left(\sqrt{x}+\sqrt{y}\right)+\left(\sqrt{y}+\sqrt{z}\right)+\left(\sqrt{x}+\sqrt{z}\right)}\)
\(\le\frac{1}{16}\left(\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{x}+\sqrt{z}}\right)\)
Tương tự ta cm được
\(VT\le\frac{1}{16}.4\left(\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{z}+\sqrt{x}}\right)\)\(=\frac{1}{4}.3=\frac{3}{4}\)
dấu "=" khi x=y=z
thanh niên này chắc VIP dài quá:))
** Max
\(A^2=\left(\sqrt{x+y}\cdot1+\sqrt{y+z}\cdot1+\sqrt{z+x}\cdot1\right)^2\)
Theo bunhia ta có:
\(A^2\le\left(1+1+1\right)\left(x+y+y+z+z+x\right)=6\Rightarrow A\le\sqrt{6}\) tại \(x=y=z=\frac{1}{3}\)
*** Min
Giả sử \(1\ge y\ge x\ge z\)
Ta có:
\(\sqrt{x+y}+\sqrt{y+z}\ge\sqrt{y}+\sqrt{x+y+z}\)
\(\Leftrightarrow\sqrt{\left(x+y\right)\left(y+z\right)}\ge\sqrt{y\left(x+y+z\right)}\)
\(\Leftrightarrow xz=0\)
Đẳng thức xảy ra \(\Leftrightarrow\orbr{\begin{cases}x=0\\z=0\end{cases}}\)
Mặt khác:
\(\sqrt{y}+\sqrt{z+x}\ge\sqrt{x+y+z}\)
\(\Leftrightarrow\sqrt{y\left(z+x\right)}=0\)
Đẳng thức xảy ra \(\orbr{\begin{cases}y=0\\z+x=0\end{cases}}\)
Kết hợp 2 dấu đẳng thức xảy ra thì \(x=z=0;y=1\)
Khi đó
\(A=\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\)
\(\ge\sqrt{x+y+z}+\sqrt{x+y+z}=2\sqrt{x+y+z}=2\)
Dấu "=" xảy ra tại \(\left(x;y;z\right)=\left(0;1;0\right)\) và các hoán vị.
Em có cách này cho phần min nhưng không chắc lắm..
Min:
Giả sử \(x\ge y\ge z\)
\(A=\sqrt{2\left(x+y+z\right)+2\Sigma_{cyc}\sqrt{\left(x+y\right)\left(z+y\right)}}\) (bình phương lên rồi lấy căn:v)
\(\ge\sqrt{2\left(x+y+z\right)+2\Sigma_{cyc}\left(\sqrt{xz}+y\right)}\)
\(=\sqrt{4\left(x+y+z\right)+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}\ge\sqrt{4\left(x+y+z\right)}=2\)
Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(1;0;0\right)\) và các hoán vị.
Đầu tiên ta chứng minh được: \(\sum\sqrt{x}=\sqrt{\left(\sum\sqrt{x}\right)^2}\le\sqrt{3\left(x+y+z\right)}\le3\)
Ta lại có: \(\sqrt{1+x^2}+\sqrt{2x}=\sqrt{\left(\sqrt{1+x^2}+\sqrt{2x}\right)^2}\le\sqrt{2\left(1+x^2+2x\right)}=\sqrt{2}\left(x+1\right)\)
Tương tự, ta sẽ có: \(P\le\sqrt{2}\left(x+1+y+1+z+1\right)+\left(2-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\le\sqrt{2}.6+\left(2-\sqrt{2}\right)3=6+\sqrt{2}.3\)
Bài 1: \(x+y+z+11=2\sqrt{x}+4\sqrt{y-1}+6\sqrt{z-2}\)
ĐKXĐ:\(x\ge0;y\ge1;z\ge2\)
\(\Leftrightarrow x-2\sqrt{x}+1+\left(y-1\right)-2\cdot\sqrt{y-1}\cdot2+4+\left(z-2\right)-2\cdot\sqrt{z-2}\cdot3+9=0\)\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-2\right)^2+\left(\sqrt{z-2}-3\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{y-1}=2\\\sqrt{z-2}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=5\\z=11\end{matrix}\right.\)
Bài 2:
Q=|x+2|+|x-2|>=|x+2+2-x|=4
Dấu = xảy ra khi (x+2)(x-2)<=0
=>-2<=x<=2
Ta có P \(\le\dfrac{1^2+\left(\sqrt{x-1}\right)^2}{2}+\dfrac{2^2+\left(\sqrt{y-4}\right)^2}{2}+\dfrac{3^2+\left(\sqrt{z-9}\right)^2}{2}\)
\(=\dfrac{1+x-1+4+y-4+9+z-9}{2}=\dfrac{x+y+z}{2}=\dfrac{28}{2}=14\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}1=\sqrt{x-1}\\2=\sqrt{y-4}\\3=\sqrt{z-9}\end{matrix}\right.\Leftrightarrow x=2;y=8;z=18\)(tm)
Áp dụng BĐT Bunhiacopxki:
\(1.\sqrt{1+x^2}+1.\sqrt{2x}\le\sqrt{2\left(x+1\right)^2}=\sqrt{2}\left(x+1\right)\)
Tương tự: \(\sqrt{1+y^2}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\); \(\sqrt{1+z^2}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\)
\(\left(3-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\le\left(3-\sqrt{2}\right)\sqrt{3\left(x+y+z\right)}=9-3\sqrt{2}\)
Cộng vế với vế:
\(A\le\sqrt{2}\left(x+y+z+3\right)+9-3\sqrt{2}=9+3\sqrt{2}\)
\(A_{max}=9+3\sqrt{2}\) khi \(x=y=z=1\)
Max: Áp dụng BĐT Bynyakovski: \(P=\Sigma\sqrt{x+1}\le\sqrt{3\left(x+y+z+3\right)}=3\sqrt{2}\)
Đẳng thức xảy ra khi x =y = z = 1
Min: Chú ý x +y + z = 3;x,y,z>0 => 0<x<3. Trước hết ta chứng minh:
\(\sqrt{x+1}\ge\frac{1}{3}x+1\Leftrightarrow\frac{1}{9}x\left(3-x\right)\ge0\) (đúng)
Do đó \(P\ge\frac{1}{3}\left(x+y+z\right)+3=4\)
Đẳng thức xảy ra khi (x;y;z) =(0;0;3) và các hoán vị.
x,y,z > 0 => 0 < x < 3. Còn lại y chang
\(\because\text{tui nhầm}\)