\(CMR:A=11^{n+2}+12^{2n+1}⋮133\) Với mọi \(n\in N\)
Giúp mk vs mk đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
\(A=11^{n+2}+12^{2n+1}\)
Ta thấy \(12^2\equiv 11\pmod {133}\Rightarrow 12^{2n+1}\equiv 11^n.12\pmod {133}\)
Do đó \(A=11^{n+2}+12^{2n+1}\equiv 11^{n+2}+11^n.12\pmod {133}\)
\(\Leftrightarrow A\equiv 11^n(11^2+12)\equiv 11^n.133\equiv 0\pmod {133}\)
Vậy \(A\vdots 133\) (đpcm)
b) Đề bài không rõ
c)
Ta thấy: \(5^{2}=25\equiv 6\pmod {19}\)
\(\Rightarrow 7.5^{2n}\equiv 7.6^n\pmod {19}\)
\(\Rightarrow 7.5^{2n}+12.6^n\equiv 7.6^n+12.6^n\equiv 19.6^n\equiv 0\pmod {19}\)
Vậy \(7.5^{2n}+12.6^n\vdots 19\) (đpcm)
Cristiano Ronaldo : đưa nick của Trần Thùy Dung và Monkey D.Luffy đây
Đặt A(n) = 11^(n+2) + 12^(2n+1)
khỏi suy nghĩ nhiều, ta dùng qui nạp nhé:
* n = 0: A(0) = 11² + 12 = 133 chia hết cho 133
* giả sử A(k) chia hết cho 133,
ta có: A(k) = 11^(k+2) + 12^(2k+1) chia hết cho 133
ta cm A(k+1) chia hết cho 133
A(k+1) = 11^(k+1+2) + 12^(2k+2+1) =
= 11^(k+2).11 + 12^(2k+1).12²
= 11.[11^(k+2)+12^(2k+1)] + (12²-11).12^(2k+1)
= 11.A(k) + 133.12^(2k+1)
Do giả thiết qui nạp A(k) chia hết cho 133 và 133.12^(2k+1) chi hết cho 133
nên ta có A(k+1) chia hết cho 133
tóm lại A(n) chia hết cho 133 với mọi n thuộc N
Vậy ...
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)
À mình ra được như trên vì có công thức :
\(a^n-b^n⋮a-b\)
Chúc bạn thi tốt !!!
Cách 2 : Dùng phương pháp quy nạp!!!
+) Với n=1 thì \(A=11^{1+2}+12^{2.1+1}=1331+1728=3059⋮133\)
Vậy biểu thức đúng với n=1
+) Giả sử bài toàn đúng với n=k hay \(11^{k+2}+12^{2k+1}⋮133\)
+) Ta CM bài toán đúng với n=k+1
Ta có :
\(P=11^{k+3}+12^{2k+3}\\ =11.11^{k+2}+12^{2k+1}.144\\ =11\left(11^{k+2}+12^{2k+1}\right)+133.12^{2k+1}\\ 11^{k+2}+12^{2k+1}⋮133\left(GTQN\right)\\ \Rightarrow P⋮133\)
Theo quy nạp ta có đpcm!!
a, Gọi ƯCLN(5n+7,2n+3)=d,ta có:
5n+7 chia hết cho d => 2(5n+7) chia hết cho d => 10n+14 chia hết cho d
2n+3 chia hết cho d => 5(2n+3) chia hết cho d => 10n+15 chia hết cho d
=>10n+15-(10n+14) chia hết cho d
=> 1 chia hết cho d
=> d=1
=> ƯCLN(5n+7,2n+3)=1
=> đpcm
b, Ta có: \(11^{n+2}+12^{2n+1}\)
\(=11^n.121+12^{2n}.12\)
\(=11^n.121+144^n.12\)
\(=11^n.121+12.11^n+144^n.12-12.11^n\)
\(=11^n\left(121+12\right)+12\left(144^n-11^n\right)\)
\(=11^n.133+12.\left(144^n-11^n\right)\)
Mà \(144^n-11^n⋮144-11=133\)
\(\Rightarrow11^{n+2}+12^{2n+1}⋮133\)
a)Gọi ƯCLN (\(n+3;2n+5\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(n+3\right)⋮d\Rightarrow2\left(n+3\right)⋮d\Rightarrow\left(2n+6\right)⋮d\\\left(2n+5\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN (\(n+3;2n+5\))=1
\(\Rightarrow\frac{n+3}{2n+5}\)là phân số tối giản(đpcm)
b)Gọi ƯCLN (\(2n+9;3n+14\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(2n+9\right)⋮d\Rightarrow3\left(2n+9\right)⋮d\Rightarrow\left(6n+27\right)⋮d\\\left(3n+14\right)⋮d\Rightarrow2\left(3n+14\right)⋮d\Rightarrow\left(6n+28\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+28\right)-\left(6n+27\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN (\(2n+9;3n+14\))=1
\(\Rightarrow\frac{2n+9}{3n+14}\) là phân số tối giản.(đpcm)
c)Gọi ƯCLN(\(6n+11;2n+5\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(6n+11\right)⋮d\\\left(2n+5\right)⋮d\Rightarrow3\left(2n+5\right)⋮d\Rightarrow\left(6n+15\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+15\right)-\left(6n+11\right)⋮d\)
\(\Rightarrow4⋮d\)
Mà \(\left(6n+15\right);\left(6n+11\right)⋮̸2\)
\(\Rightarrow d=1\)
⇒ƯCLN(\(6n+11;2n+5\))=1
\(\Rightarrow\frac{6n+11}{2n+5}\)là phân số tối giản (đpcm)
d)Gọi ƯCLN(\(12n+1;30n+2\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(12n+1\right)⋮d\Rightarrow5\left(12n+1\right)⋮d\Rightarrow\left(60n+5\right)⋮d\\\left(30n+2\right)⋮d\Rightarrow2\left(30n+2\right)⋮d\Rightarrow\left(60n+4\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN(\(12n+1;30n+2\))=1
\(\Rightarrow\frac{12n+1}{30n+2}\) là phân số tối giản (đpcm)
e)Gọi ƯCLN(\(21n+4;14n+3\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(21n+4\right)⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow\left(42n+8\right)⋮d\\\left(14n+3\right)⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow\left(42n+9\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN(\(21n+4;14n+3\))=1
\(\Rightarrow\frac{21n+4}{14n+3}\)là phân số tối giản (đpcm)
f) Gọi ƯCLN(\(2n+3;n+2\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(2n+3\right)⋮d\\\left(n+2\right)⋮d\Rightarrow2\left(n+2\right)⋮d\Rightarrow\left(2n+4\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+4\right)-\left(2n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN(\(2n+3;n+2\))=1
\(\Rightarrow\frac{2n+3}{n+2}\)là phân số tối giản (đpcm)
g) Gọi ƯCLN(\(n+1;3n+2\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(n+1\right)⋮d\Rightarrow3\left(n+1\right)⋮d\Rightarrow\left(3n+3\right)⋮d\\\left(3n+2\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN(\(n+1;3n+2\))=1
\(\Rightarrow\frac{n+1}{3n+2}\) là phân số tối giản (đpcm)
B=n(n4-4n2+4)-n3 = n5-4n3+4n-n3=n5-5n3+4n=n(n4-5n2+4)=n(n4-n2-4n2+4)=n[n2(n2-1)-4(n2-1)]=n(n2-1)(n2-4)=n(n-1)(n-2)(n+1)(n+2)
=> B=(n-2)(n-1).n(n+1)(n+2)
Nhận thấy, các số (n-2); (n-1); n; (n+1) và (n+2) là 5 số tự nhiên liên tiếp nên ít nhất phải có 2 số là số chẵn và 1 số phải có tận cùng là 5 hoặc 0
=> Số tận cùng của B là 0
=> B chia hết cho 10 với mọi n thuộc Z
2n + 2 chia hết cho n + 5
=> 2(n+5) - 8 chia hết cho n + 5
=> 8 chia hết cho n + 5
=> n + 5 thuộc Ư(8) = { -8 ; -4 ; -2 ; -1 ; 1 ; 2 ; 4 ; 8 }
n+5 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
n | -13 | -9 | -7 | -6 | -4 | -3 | -1 | 3 |
Vậy n thuộc các giá trị trên
tính nhanh :a) 6 và4/5 - (1 và2/3 - 3 và4/5) b)6 và7/5-(1 và3/4 + 3 và5/9)
c)7 và9/5-(2 và3/4+3 và5/9)
d) 7 và 5/11 - (2 và 3/7+3 và 5/11)
e) -3/5.5/7+ (-3)/5.3/7+ (-3)/5.6/7
\(A=11^{n+2}+12^{2n+1}\)
\(=11^n.121+144^n.12\)
\(=11^n.133+144^n.12-11^n.12\)
\(=11^n.133+12\left(144^n-12^n\right)\)
Ta có \(a^n-b^n⋮a-b\Rightarrow144^n-12^n⋮133\)
\(\Rightarrow11^n.133+12\left(144^n-12^n\right)⋮133\)
Vậy \(A=11^{n+2}+12^{2n+1}⋮133\left(đpcm\right)\)