Bài 5: cho biểu thức A = m+1/m-2 - 1/m và B = 1/m + 2+m/m-2
c)thu gọn các biểu thức A,B
d)tìm m sao cho biểu thức A và biểu thức B có giá trị bằng nhau
e)tìm m sao cho biểu thức A có giá trị bằng 1
f)tìm m sao cho biểu thứcA+B bằng 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
\(A=\dfrac{9}{x-\sqrt{x}-2}+\dfrac{2\sqrt{x}+5}{\sqrt{x}+1}-\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)
\(=\dfrac{9}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}+\dfrac{2\sqrt{x}+5}{\sqrt{x}+1}-\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)
\(=\dfrac{9+\left(2\sqrt{x}+5\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{9+2x-4\sqrt{x}+5\sqrt{x}-10-x+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
Để A là số nguyên thì \(\sqrt{x}⋮\sqrt{x}-2\)
=>\(\sqrt{x}-2+2⋮\sqrt{x}-2\)
=>\(\sqrt{x}-2\in\left\{1;-1;2;-2\right\}\)
=>\(\sqrt{x}\in\left\{3;1;4;0\right\}\)
=>\(x\in\left\{9;1;16;0\right\}\)
2:
\(\text{Δ}=\left(-2m-3\right)^2-4m\)
\(=4m^2+12m+9-4m\)
\(=4m^2+5m+9\)
\(=\left(2m\right)^2+2\cdot2m\cdot\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{56}{16}\)
\(=\left(2m+\dfrac{5}{4}\right)^2+\dfrac{56}{16}>=\dfrac{56}{16}>0\)
=>Phương trình luôn có hai nghiệm phân biệt
\(x_1^2+x_2^2=9\)
=>\(\left(x_1+x_2\right)^2-2x_1x_2=9\)
=>\(\left(2m+3\right)^2-2m=9\)
=>\(4m^2+12m+9-2m-9=0\)
=>4m^2+10m=0
=>2m(2m+5)=0
=>m=0 hoặc m=-5/2
Cho biểu thức P= 496-m×5
Tìm giá trị của m để biểu thức P và biểu thức A= 376 +m có giá trị bằng nhau
theo đề ta ta có P = A
=> 496 - m x 5 = 376 + m
=> 496 + m - m x 6 = 376 + m
=> 120 - m x 6 + (m + 376) = 376 + m
=> 120 - m x 6 = 0 (cùng bớt đi 376 + m)
=> 120 = m x 6
=> m = 120 : 6 = 20
vậy m = 20
Câu 2:
a: Để (d1) cắt (d2) thì \(m-1\ne3-m\)
=>\(2m\ne4\)
=>\(m\ne2\)
b: Thay m=0 vào (d1), ta được:
\(y=\left(0-1\right)x+2=-x+2\)
Thay m=0 vào (d2), ta được:
\(y=\left(3-0\right)x-2=3x-2\)
Vẽ đồ thị:
c: Phương trình hoành độ giao điểm là:
3x-2=-x+2
=>3x+x=2+2
=>4x=4
=>x=1
Thay x=1 vào y=3x-2, ta được:
y=3*1-2=3-2=1
d:
Khi m=0 thì (d2): y=3x-2
Gọi \(\alpha\) là góc tạo bởi (d2): y=3x-2 với trục Ox
y=3x-2 nên a=3
\(tan\alpha=a=3\)
=>\(\alpha\simeq72^0\)
Câu 3:
a: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OM là đường trung trực của AB
=>OM\(\perp\)AB tại H và H là trung điểm của AB
Xét ΔOAM vuông tại A có AH là đường cao
nên \(OH\cdot OM=OA^2\)
=>\(OH\cdot OM=R^2\)
b: Ta có: AC//OM
OM\(\perp\)AB
Do đó: AB\(\perp\)AC
=>ΔABC vuông tại A
=>ΔABC nội tiếp đường tròn đường kính BC
mà ΔABC nội tiếp (O)
nên O là trung điểm của BC
=>B,O,C thẳng hàng
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>BE\(\perp\)EC tại E
=>BE\(\perp\)CM tại E
Xét ΔMBC vuông tại B có BE là đường cao
nên \(ME\cdot MC=MB^2\)(3)
Xét ΔMBO vuông tại B có BH là đường cao
nên \(MH\cdot MO=MB^2\left(4\right)\)
Từ (3) và (4) suy ra \(ME\cdot MC=MH\cdot MO\)
a) Với m = 0, giá trị biểu thức 12 : (3 – m) là:
12 : (3 – 0) = 12 : 3 = 4
Với m = 1, giá trị biểu thức 12 : (3 – m) là:
12 : (3 – 1 ) = 12 : 2 = 6
Với m = 2, giá trị biểu thức 12 : (3 – m) là:
12 : (3 – 2) = 12 : 1 = 12
b) Vì 4 < 6 < 12 nên trong ba giá trị tìm được ở câu a, với m = 2 thì biểu thức 12 : (3 – m) có giá trị lớn nhất.