tìm X
x+(x+1)+(x+2)+...+2018+2020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{2020}+\frac{x-2}{2021}=\frac{x+1}{2018}+\frac{x+2}{2017}\)
\(\Leftrightarrow\frac{x-1}{2020}+1+\frac{x-2}{2021}-1=\frac{x+1}{2018}+1+\frac{x+2}{2017}+1\)
\(\Leftrightarrow\frac{x+2019}{2020}+\frac{x+2019}{2021}=\frac{x+2019}{2018}+\frac{x+2019}{2017}\)
\(\Leftrightarrow\left(x+2019\right)\left(\frac{1}{2020}+\frac{1}{2021}-\frac{1}{2018}-\frac{1}{2017}\right)=0\)
mà \(\frac{1}{2020}+\frac{1}{2021}-\frac{1}{2018}-\frac{1}{2017}\ne0\)
\(\Leftrightarrow x+2019=0\)
\(\Leftrightarrow x=-2019\)
Cho a,b,c khác 0 t/m:
1/a+1/b+1/c=1/2018 và a+b+c=2018
cmr" 1/a^2019+1/b^2019+1/c^2019=1/(a^2019+b^2019+c^2019)
Ta có :
Đến đây là dạng của phương trình ước số bạn chỉ cần xét ước của là sẽ tìm được nghiệm nguyên của
\(\frac{x+1}{2020}+\frac{x+2}{2019}+\frac{x+3}{2018}+\frac{x+4}{2017}=-4\)
=> \(\left[\frac{x+1}{2020}+1\right]+\left[\frac{x+2}{2019}+1\right]+\left[\frac{x+3}{2018}+1\right]+\left[\frac{x+4}{2017}+1\right]=-4\)
=> \(\left[\frac{x+1}{2020}+\frac{2020}{2020}\right]+\left[\frac{x+2}{2019}+\frac{2019}{2019}\right]+\left[\frac{x+3}{2018}+\frac{2018}{2018}\right]+\left[\frac{x+4}{2017}+\frac{2017}{2017}\right]=-4\)
=> \(\frac{x+2021}{2020}+\frac{x+2021}{2019}+\frac{x+2021}{2018}+\frac{x+2021}{2017}=-4\)
=> \(\left[x+2021\right]\left[\frac{1}{2000}+\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}\right]=-4\)
Do \(\frac{1}{2020}>\frac{1}{2019}>\frac{1}{2018}>\frac{1}{2017}\)nên \(\frac{1}{2000}+\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}\ne0\)
Do đó : x + 2021 = -4 => x = -4 - 2021 = -2025
a, Vì \(\left(x-1\right)^2\ge0\Rightarrow A=\left(x-1\right)^2+2018\ge2018\)
Dấu "=" xảy ra khi x - 1 = 0 <=> x = 1
Vậy GTNN của A=2018 khi x=1
b, Vì \(\hept{\begin{cases}\left(x+2\right)^{2018}\ge0\\\left(y-3\right)^{2020}\ge0\end{cases}\Rightarrow\left(x+2\right)^{2018}+\left(y-3\right)^{2020}\ge0}\)
\(\Rightarrow B=\left(x+2\right)^{2018}+\left(y-3\right)^{2020}+2019\ge2019\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+2=0\\y-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy GTNN của B = 2019 khi x=-2,y=3
ta có
A = ( x - 1 )2 + 2018
=( x - 1 )2 + 2018≥2018
dấu "=" xảy ra khi ( x - 1 )2=0=>x=1
vs min A=2018 khi x=1
B=5+2(x-2019)2020
Vì (x-2019)2020 ≥0
=>5+(x-2019)2020 ≥5
Để B đạt Min
=>x-2019=0
=>x=2019
Vậy MinB=5 <=>x=2019