Cho biểu thức P= a/√(a^2 - b^2) - [ 1+(√a^2 - b^2)] : b/a- ( √a^2
- b^2)
a) Rút gọn P
b) Tính giá trị P nếu a/b = 3/2 2
c) Tìm điều kiện của a,b để M<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{a}{a-1}-\frac{a}{a+1}+\frac{2}{a^2-1}\left(ĐK:a\ne\pm1\right)\)
\(=\frac{a\left(a+1\right)-a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{2}{a^2-1}\)
\(=\frac{a^2+a-a^2+a+2}{a^2-1}=\frac{2}{a-1}\left(Q.E.D\right)\)
Để A nguyên suy ra 2/a-1 nguyên
\(< =>2⋮a-1< =>a\in\left\{2;3;-1;0\right\}\)
Để \(A\ge1< =>\frac{2}{a-1}\ge1< =>2\ge a-1< =>a\le3\)
mấy bài khác để từ từ mình làm dần hoặc bạn khác làm
Đề bài là \(B=\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2-\left(x+2\right)^2}\) hay là \(B=\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2}-\left(x+2\right)^2?\)
\(\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2-\left(x+2\right)^2}\)
viết lại biểu thức
\(a.a\ne\pm1\)
\(b.K=\dfrac{1}{a+1}+\dfrac{2}{a^2-1}=\dfrac{a-1}{\left(a-1\right)\left(a+1\right)}+\dfrac{2}{\left(a-1\right)\left(a+1\right)}=\dfrac{a+1}{\left(a-1\right)\left(a+1\right)}=\dfrac{1}{a-1}\)
\(c.K=\dfrac{1}{1-\dfrac{1}{2}}=\dfrac{1}{\dfrac{1}{2}}=2\)
a) Ta có: \(\dfrac{a}{b}=\dfrac{3}{2}\Leftrightarrow b=\dfrac{2a}{3}\)
\(M=\sqrt{\dfrac{a-b}{a+b}}=\sqrt{\dfrac{a-\dfrac{2a}{3}}{a+\dfrac{2a}{3}}}=\sqrt{\dfrac{\dfrac{a}{3}}{\dfrac{5a}{3}}}=\sqrt{\dfrac{a}{3}.\dfrac{3}{5a}}=\sqrt{\dfrac{1}{5}}=\dfrac{\sqrt[]{5}}{5}\)
b) \(M=\sqrt{\dfrac{a-b}{a+b}}< 1\Leftrightarrow\left\{{}\begin{matrix}b\ne0\\a^2>b^2\\a-b< a+b\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2>b^2\\b>0\end{matrix}\right.\)
Dài quá trôi hết đề khỏi màn hình: nhìn thấy câu nào giải cấu ấy
Bài 4:
\(A=\frac{\left(x-1\right)+\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{2}{\left(x+1\right)\left(x-1\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
a) DK x khác +-1
b) \(dk\left(a\right)\Rightarrow A=\frac{2}{\left(x+1\right)}\)
c) x+1 phải thuộc Ước của 2=> x=(-3,-2,0))
1. a) Biểu thức a có nghĩa \(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x-2\ne0\\x+2\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)
Vậy vs \(x\ne2,x\ne-2\) thì bt a có nghĩa
b) \(A=\frac{x}{x+2}+\frac{4-2x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4-2x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-2x+4-2x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x-2}{x+2}\)
c) \(A=0\Leftrightarrow\frac{x-2}{x+2}=0\)
\(\Leftrightarrow x-2=\left(x+2\right).0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)(ko thỏa mãn điều kiện )
=> ko có gía trị nào của x để A=0
a: \(A=\left(\dfrac{x}{x^2-4}+\dfrac{4}{x-2}+\dfrac{1}{x+2}\right):\dfrac{3x+3}{x^2+2x}\)
\(=\dfrac{x+4x+8+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)
\(=\dfrac{6\left(x+1\right)\cdot x\left(x+2\right)}{3\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{2x}{x-2}\)
a: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b: \(A=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)
c: Thay x=-2 vào A, ta được:
\(A=\dfrac{-2-1}{-2+1}=\dfrac{-3}{-1}=3\)