\(x^3-2x=-x^2+2\)
mình cần gấp mong các bạn giúp đỡ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x2+5)(x-1)(2x+3)=0
<=> x2+5=0 hoặc x-1=0 hoặc 2x+3=0
<=> x2=-5(loại) hoặc x=1 hoặc 2x=-3
<=> x=1 hoặc x=-3/2
Vậy x=1; x=-3/2
Trả lời:
\(\left(x^2+5\right)\left(x-1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\)\(x^2+5=0\)hoặc\(x-1=0\)hoặc\(2x+3=0\)
\(\Leftrightarrow\)\(x^2=-5\)hoặc \(x=1\)hoặc \(2x=-3\)
\(\Leftrightarrow\)\(x\in\varnothing\)(Vì\(x^2\ge0\)với \(\forall x\)) hoặc \(x=1\)hoặc \(x=\frac{-3}{2}\)
Vậy\(x=1\)hoặc \(x=\frac{-3}{2}\)
Hok tốt!
Bad boy
<=> \(x^2-25=10x+35-2x^2-7x\)
<=> \(3x^2-3x-60=0\)
<=> \(x^2-x-20=0\)
<=> \(\left(x-5\right)\left(x+4\right)=0\)
<=> \(\orbr{\begin{cases}x=5\\x=-4\end{cases}}\)
Vay \(x\in\left\{-4;5\right\}\)
Chuc ban hoc tot
\(ĐKXĐ:x\ne\pm3\)
\(pt\Leftrightarrow\frac{\left(x+3\right)^2-\left(x-3\right)^2}{x^2-9}=\frac{17}{x^2-9}\)
\(\Leftrightarrow\left(x+3\right)^2-\left(x-3\right)^2=17\)
Tự dừng bấm Gửi tl
\(\Leftrightarrow x^2+6x+9-x^2+6x-9=17\)
\(\Leftrightarrow12x=17\Leftrightarrow x=\frac{17}{12}\)
x2+4x-5=0
<=> x2-5x+x-5=0
<=> x(x-5)+(x-5)=0
<=> (x-5)(x+1)=0
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}}\)
a, \(2mx-m^2\ge2x-2m+1\Leftrightarrow2x\left(m-1\right)\ge\left(m-1\right)^2\)
Nếu \(m-1\ge0\Leftrightarrow m\ge1\)thì
\(\Leftrightarrow2x\ge m-1\Leftrightarrow x\ge\frac{m-1}{2}\)
Nếu \(m< 1\)thì :
\(\Leftrightarrow2x\le m-1\Leftrightarrow x\le\frac{m-1}{2}\)
b,\(\Leftrightarrow2m-mx+m^2-2m+1>2x+5\Leftrightarrow m^2-4>\left(m+2\right)x\)
Nếu \(\left(m-2\right)\left(m+2\right)\ge0\Leftrightarrow\orbr{\begin{cases}m\le-2\\m\ge2\end{cases}}\)thì
\(\Leftrightarrow x< m-2\)
Nếu \(m^2-4< 0\Leftrightarrow-2< m< 2\)thì
\(\Leftrightarrow x>m-2\)
c, \(\Leftrightarrow\left(m^2-m-1-3+m\right)x>5m\)
\(\Leftrightarrow\left(m^2-4\right)x>5m\)
Nếu \(m^2-4\ge0\Leftrightarrow\orbr{\begin{cases}m\le-2\\m\ge2\end{cases}}\)thì
\(x>\frac{5m}{m^2-4}\)
Nếu \(m^2-4< 0\Leftrightarrow-2< m< 2\)thì
\(x< \frac{5m}{m^2-4}\)
\(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)
\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
\(\Leftrightarrow\frac{x\left(x+2\right)-\left(x-2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)\(\Leftrightarrow x\left(x+2\right)-\left(x-2\right)=2\)
\(\Leftrightarrow x^2+2x-x+2=2\)\(\Leftrightarrow x^2+x=0\)\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
So sánh với ĐKXĐ ta thấy: \(x=0\)không thoả mãn
Vậy tập nghiệm của phương trình là \(S=\left\{-1\right\}\)
Ta có: \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)
\(\Leftrightarrow\frac{x.\left(x+2\right)-\left(x-2\right)}{\left(x-2\right).x}=\frac{2}{x^2-2x}\)
\(\Leftrightarrow\frac{x^2+2x-x+2}{x^2-2x}=\frac{2}{x^2-2x}\)
\(\Rightarrow x^2+x+2=2\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x.\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy \(S=\left\{-1;0\right\}\)
Bài làm
2+4+...+2016+2018/1019090 = -3x² - 4x
Ta có: số số hạng tử của phân số 2+4+...+2016+2018/1019090 là:( 2018 - 2 ) : 2 + 1 = 1009 ( số hạng)
Tổng của tử đó là: ( 2018 + 2 ) . 1009 : 2 = 1019090
=> Ta được: 1019090/1019090 = -3x² - 4x
<=> -3x² - 4x = 1
<=> -3x² - 4x - 1 = 0
<=> -3x² - 3x - x - 1 = 0
<=> -3x( x + 1 ) -( x + 1 ) = 0
<=> ( x + 1 )( -3x - 1 ) = 0
<=> x + 1 = 0 hoặc -3x - 1 = 0
<=> x = -1 hoặc x = 1/-3
Vậy nghiệm phương trình là: S = { -1; -1/3 }
Không có đề bài thì mình chịu!
a) \(\left(x+1\right)\left(2x-3\right)=\left(2x-1\right)\left(x+5\right)\)
\(\Leftrightarrow x+1=\frac{\left(2x-1\right)\left(x+5\right)}{2x-3}\)
\(\Leftrightarrow x=\frac{\left(2x-1\right)\left(x+5\right)}{2x-3}-1\)
b) \(\left(x-1\right)^3-x\left(x+1\right)^2=5x\left(2-x\right)-11\left(x+2\right)\)
\(\Leftrightarrow\)\(\left(x-1\right)^3=5x\left(2-x\right)-11\left(x+2\right)+x\left(x+1\right)^2\)
\(\Leftrightarrow x-1=\sqrt[3]{5x\left(2-x\right)-11\left(x+2\right)+x\left(x+1\right)^2}\)
\(\Leftrightarrow x=\sqrt[3]{5x\left(2-x\right)-11\left(x+2\right)+x\left(x+1\right)^2}+1\)
\(x^3-2x=-x^2+2\)
\(\Leftrightarrow x^3+x^2-2x-2=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-2\right)=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Ta có: \(x^3-2x=-x^2+2\)
\(\Leftrightarrow\left(x^3+x^2\right)-\left(2x+2\right)=0\)
\(\Leftrightarrow x^2.\left(x+1\right)-2.\left(x+1\right)=0\)
5\(\Leftrightarrow\left(x+1\right).\left(x^2-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x^2=2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\pm\sqrt{2}\end{cases}}\)
Vậy \(S=\left\{-\sqrt{2};-1;\sqrt{2}\right\}\)