Bài 3 (3,5 điểm): Cho ΔABC có AB = 8cm, AC = 12cm. Trên cạnh cho BD = 2cm, trên cạnh AC lấy điểm E sao cho AE = 9cm. a) Tính các tỉ số AC AD ; AD AE . b) Chứng minh: ΔADE đồng dạng ΔABC. c) Đường phân giác của BAˆC cắt BC tại I. Chứng minh: IB.AE = IC
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
6 tháng 3 2022
a: AD=AB-BD=6(cm)
=>AD/AB=3/4
AE/AC=9/12=3/4
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc A chung
Do đó:ΔADE\(\sim\)ΔABC
5 tháng 3 2023
a) Ta có : AD + DB = AB ( vì D nằm trên cạnh AB)
=> AD + 2 = 8
=> AD = 6cm
Do đó : ADAB=68=34����=68=34
AEAC=912=34����=912=34
=> ADAB=AEAC=34����=����=34
b) Xét ΔADEΔ��� và ΔABCΔ��� có :
ˆA�^ chung
ADAB=AEAC����=����
=> ΔADE∽ΔABC(c.g.c)Δ���∽Δ���(�.�.�)
c) Vì IA�� là đường phân giác của ΔABCΔ��� nên
=> ABAC=IBIC=812=23����=����=812=23
Mà ADAB=AEAC����=���� (ΔADE∽ΔABC(cmt))(Δ���∽Δ���(���)) ⇒ABAC=ADAE=23⇒����=����=23
=>IBIC=ADAE⇒IB⋅AE=IC⋅AD(đpcm)����=����⇒��⋅��=��⋅��(đ���)
4 tháng 3 2023
a: AD/AB=3/4
AE/AC=3/4
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc A chung
=>ΔADE đồng dạng vơi ΔABC