K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2020

bo deo biet

5 tháng 3 2020

Vì a, b, c là độ dài của 3 cạnh tam giác \(\Rightarrow a,b,c>0\)

Do chu vi của tam giác bằng 1 \(\Rightarrow a+b+c=1\Rightarrow b+c=1-a\)

Giả sử : \(ab+ac+bc>a\cdot b\cdot c\)

\(\Rightarrow ab+ac+bc-abc>0\)

\(\Rightarrow a\left(b+c\right)+bc\left(1-a\right)>0\Rightarrow a\left(b+c\right)+bc\left(b+c\right)>0\)

\(\Rightarrow\left(b+c\right)\left(a+bc\right)>0\)( thỏa mãn vì \(a,b,c>0\))

Vậy \(ab+bc+ac>a\cdot b\cdot c\)( ĐPCM )

26 tháng 3 2020

Ta có:

a<b+ca<b+c 
--> a+a<a+b+ca+a<a+b+c 
--> 2a<22a<2 
--> a<1a<1 

Tương tự ta có : b<1,c<1b<1,c<1 

Suy ra: (1−a)(1−b)(1−c)>0(1−a)(1−b)(1−c)>0 
⇔ (1–b–a+ab)(1–c)>0(1–b–a+ab)(1–c)>0 
⇔ 1–c–b+bc–a+ac+ab–abc>01–c–b+bc–a+ac+ab–abc>0 
⇔ 1–(a+b+c)+ab+bc+ca>abc1–(a+b+c)+ab+bc+ca>abc 

Nên abc<−1+ab+bc+caabc<−1+ab+bc+ca 
⇔ 2abc<−2+2ab+2bc+2ca2abc<−2+2ab+2bc+2ca 
⇔ a2+b2+c2+2abc<a2+b2+c2–2+2ab+2bc+2caa2+b2+c2+2abc<a2+b2+c2–2+2ab+2bc+2ca 
⇔ a2+b2+c2+2abc<(a+b+c)2−2a2+b2+c2+2abc<(a+b+c)2−2 
⇔ a2+b2+c2+2abc<22−2a2+b2+c2+2abc<22−2 , (do a+b=c=2a+b=c=2 )
⇔ dpcm

5 tháng 7 2021

a)

AC=((120-50-10):2)+10=40(cm)

AB=40-10=30(cm)

b)Diện tích tam giác ABC=

(40.30):2=600(cm2)

c)

Vì tam giác ABC vuông tại A nên chiều cao hạ từ A xuống BC = AB = 30 (cm) :v

28 tháng 11 2021

Bai toán kiem tra môt

28 tháng 11 2021
Cạnh AB là: 315:3=105 Tổng cạnh BC và AC là: 315-105=210 Cạnh BC là: (210+2):2=106 Cạnh Ac là: 210-106=104
7 tháng 4 2016

trả lời giúp mk đi

AH
Akai Haruma
Giáo viên
5 tháng 2 2024

Lời giải:

Coi độ dài cạnh AB là 3 phần thì độ dài cạnh AC là 4 phần, độ dài cạnh BC là 5 phần.

Tổng số phần bằng nhau: $3+4+5=12$ (phần)

Độ dài cạnh AB: $144:12\times 3=36$ (cm)

Độ dài cạnh AC: $144:12\times 4=48$ (cm)

Diện tích tam giác $ABC$: $36\times 48:2=864$ (cm2)