Cho n là số nguyên tố >3,
hỏi n^2 + 3002 là số nguyên tố hay hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n là số nguyên tố lớn hơn 3=>n ko chia hết cho 3=>n^2 chia 3 dư 1
=>n^2=3k+1
=>n^2+2018=3k+1+2018=3k+2019 chia hết cho 3
=>n^2 là hợp số
hợp số
ta có 3002 là hợp số ( vì 3002 chia hết cho 2 )
suy ra P2 là hợp số
Gọi số nguyên tố >3 là a
Ta có:
a2+2015
Vi a2 là số chính phương
2015 là hợp số
=>a2+2015 ko thể là số nguyên tố
Vậy a2+2015 ko phải là số ngyen tố
Cộng vế với vế ta được
1999.( x1+x2 +.....+ x2000) = 1+2+3+....+ 2000
n là số nguyên tố lớn hơn 3 nên n không chia hết cho 3
\(\Rightarrow n^2\)chia 3 dư 1
\(\Rightarrow n^2+3002⋮3\)
Mà \(n^2+3002>3\)nên \(n^2+3002\)là hợp số
n là số nguyên tố và n > 3
=> n = 3k + 1 hoặc n = 3k + 2
xét n = 3k + 1
=> n^2 + 3002 = (3k + 1)^2 + 3002
= 9k^2 + 6k + 1 + 3002
= 9k^2 + 6k + 3003
= 3(3k^2 + 2k + 1001) chia hết cho 3
=> n^2 + 3002 là hợp số
xét n = 3k + 2
=> n^2 + 3002 = (3k + 2)^2 + 3002
= 9k^2 + 12k + 4 + 3002
= 9k^2 + 12k + 3006
= 3(3k^2 + 4k + 1002) chia hết cho 3
=> n^2 + 3002 là hợp số
vậy_