K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2023

Phân tích đa thức thành nhân tử

1: \(x^2-x-y^2-y\)

\(=\left(x^2-y^2\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-1\right)\)

2: \(x^2-y^2+x-y\)

\(=\left(x^2-y^2\right)+\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y\right)+\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y+1\right)\)

3: \(3x-3y+x^2-y^2\)

\(=\left(3x-3y\right)+\left(x^2-y^2\right)\)

\(=3\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left(x+y+3\right)\)

4: \(5x-5y+x^2-y^2\)

\(=\left(5x-5y\right)+\left(x^2-y^2\right)\)

\(=5\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left(5+x+y\right)\)

5: \(x^2-5x-y^2-5y\)

\(=\left(x^2-y^2\right)-\left(5x+5y\right)\)

\(=\left(x-y\right)\left(x+y\right)-5\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-5\right)\)

6: \(x^2-y^2+2x-2y\)

\(=\left(x^2-y^2\right)+\left(2x-2y\right)\)

\(=\left(x-y\right)\left(x+y\right)+2\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y+2\right)\)

7: \(x^2-4y^2+x+2y\)

\(=\left(x^2-4y^2\right)+\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y\right)+\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y+1\right)\)

8: \(x^2-y^2-2x-2y\)

\(=\left(x^2-y^2\right)-\left(2x+2y\right)\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-2\right)\)

9: \(x^2-4y^2+2x+4y\)

\(=\left(x^2-4y^2\right)+\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)+2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y+2\right)\)

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

$A=x^2+y^2-6x+4y+20=(x^2-6x+9)+(y^2+4y+4)+7$

$=(x-3)^2+(y+2)^2+7\geq 0+0+7=7$
Vậy $A_{\min}=7$. Giá trị này đạt tại $(x-3)^2=(y+2)^2=0$

$\Leftrightarrow x=3; y=-2$

---------------------

$B=9x^2+y^2+2z^2-18x+4z-6y+30$

$=(9x^2-18x+9)+(y^2-6y+9)+(2z^2+4z+2)+10$

$=9(x^2-2x+1)+(y^2-6y+9)+2(z^2+2z+1)+10$

$=9(x-1)^2+(y-3)^2+2(z+1)^2+10\geq 10$
Vậy $B_{\min}=10$. Giá trị này đạt tại $(x-1)^2=(y-3)^2=(z+1)^2$

$\Leftrightarrow x=1; y=3; z=-1$

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

$C=x^2+y^2+z^2-xy-yz-xz+3$

$2C=2x^2+2y^2+2z^2-2xy-2yz-2xz+6$

$=(x^2-2xy+y^2)+(y^2-2yz+z^2)+(x^2-2xz+z^2)+6$

$=(x-y)^2+(y-z)^2+(z-x)^2+6\geq 6$

$\Rightarrow C\geq 3$

Vậy $C_{\min}=3$. Giá trị này đạt tại $x-y=y-z=z-x=0$

$\Leftrihgtarrow x=y=z$

--------------------------------------

$D=5x^2+2y^2+4xy-2x+4y+2021$

$=2(y^2+2xy+x^2)+3x^2-2x+4y+2021$

$=2(x+y)^2+4(x+y)+3x^2-6x+2021$
$=2(x+y)^2+4(x+y)+2+3(x^2-2x+1)+2016$

$=2[(x+y)^2+2(x+y)+1]+3(x^2-2x+1)+2016$

$=2(x+y+1)^2+3(x-1)^2+2016\geq 2016$

Vậy $D_{\min}=2016$ khi $x+y+1=x-1=0$

$\Leftrightarrow x=1; y=-2$

26 tháng 8 2021

`a)x^2-2x+2+4y^2+4y`

`=x^2-2x+1+4y^2+4y+1`

`=(x-1)^2+(2y+1)^2`

`b)4x^2+y^2+12x+4y+13`

`=4x^2+12x+9+y^2+4y+4`

`=(2x+3)^2+(y+2)^2`

`c)x^2+17+4y^2+8x+4y`

`=x^2+8x+16+4y^2+4y+1`

`=(x+4)^2+(2y+1)^2`

`d)4x^2-12xy+y^2-4y+13`

`=4x^2-12x+9+y^2-4y+4`

`=(2x-3)^2+(y-2)^2`

26 tháng 8 2021

a) \(x^2-2x+2+4y^2+4y=\left(x-1\right)^2+\left(2y+1\right)^2\)

b) \(4x^2+y^2+12x+4y+13=\left(2x+3\right)^2+\left(y+2\right)^2\)

c) \(x^2+17+4y^2+8x+4y=\left(x+4\right)^2+\left(2y+1\right)^2\)

d) \(4x^2-12x+y^2-4y+13=\left(2x-3\right)^2+\left(y-2\right)^2\)

21 tháng 7 2023

a) \(y^2-x^2+6y+9\)

\(=\left(y^2+6y+9\right)-x^2\)

\(=\left(y+3\right)^2-x^2\)

\(=\left[\left(y+3\right)-x\right]\left[\left(y+3\right)+x\right]\)

\(=\left(y-x+3\right)\left(y+x+3\right)\)

b) \(4y^2-x^2-4y+1\)

\(=\left(4y^2-4x+1\right)-x^2\)

\(=\left(2y-1\right)^2-x^2\)

\(=\left[\left(2y-1\right)+x\right]\left[\left(2y-1\right)-x\right]\)

\(=\left(2y+x-1\right)\left(2y-x-1\right)\)

c)  \(\left(x-y\right)^2-x^2+y^2\)

\(=\left(x-y\right)^2-\left(x^2-y^2\right)\)

\(=\left(x-y\right)^2-\left(x+y\right)\left(x-y\right)\)

\(=\left(x-y\right)\left[\left(x-y\right)-\left(x+y\right)\right]\)

\(=\left(x-y\right)\left(x-y-x-y\right)\)

\(=-2y\left(x-y\right)\)

d) \(x^6-y^6\)

\(=\left(x^3\right)^2-\left(y^3\right)^2\)

\(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)

a: =(y+3)^2-x^2

=(y+3+x)(y+3-x)

b: =(2y-1)^2-x^2

=(2y-1-x)(2y-1+x)

c: =x^2-2xy+y^2-x^2+y^2

=2y^2-2xy

=2y(y-x)

d: =(x^3-y^3)(x^3+y^3)

=(x-y)(x+y)(x^2+xy+y^2)(x^2-xy+y^2)

1 tháng 3 2017

\(A_{\left(x,y\right)}=x^2+4y^2+1-4xy+2x-4y\)

Đặt 2y=z

\(A_{\left(x,z\right)}=x^2+z^2+1-2xz+2x-2z\)

\(A_{\left(x,z\right)}=\left(x^2-xz\right)+\left(z^2-xz\right)+\left(x-z\right)+\left(x-z+1\right)\)

\(A_{\left(x,z\right)}=\left[x\left(x-z\right)+z\left(z-x\right)+\left(x-z\right)\right]+\left(x-z+1\right)\)

\(A_{\left(x,z\right)}=\left[\left(x-z\right)\left(x-z+1\right)\right]+\left(x-z+1\right)\)

\(A_{\left(x,z\right)}=\left(x-z+1\right)\left(x-z+1\right)=\left(x-z+1\right)^2\)

Vậy nghiệm đã thức là: \(x-z+1=0\Leftrightarrow x-2y+1=0\)

p/s: lớp 8 không dài dòng thế này%

7 tháng 10 2021

\(l,=5x\left(y^2-2yz+5z\right)\\ m,=\left(x+1\right)^3-27y^3\\ =\left(x+1-3y\right)\left(x^2+2x+1+3xy+3y+9y^2\right)\\ n,=\left(x-3y\right)^2\\ o,=\left(x+2y\right)^3\\ p,=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\\ q,=\left(x+2y\right)^2-2\left(x-2y\right)+1\\ =\left(x+2y-1\right)^2\)

9 tháng 7 2021

Em tách số 2 thành 1+1 tự khắc nó ra hằng đẳng thức nhé!

9 tháng 7 2021

em cảm ơn ạ

12 tháng 9 2021

\(B=x^2+4y+4y^2+8x+42=\left(x^2+8x+16\right)+\left(4y^2+4y+1\right)+25=\left(x+4\right)^2+\left(2y+1\right)^2+25\ge25\)

Dấu = xảy ra khi x = -4; y = -1/2

12 tháng 9 2021

\(B=x^2+4y+4y^2+8x+42\)
\(B=x^2+8x+16+4y^2+4y+1+25\)
\(B=\left(x+4\right)^2\left(2y+1\right)^2+25\)
GTNN của B là 25
xảy ra khi (x+4)2=0 hoặc (2y+1)2=0
                 x+4=0     hoặc 2y+1=0
                 x=-4        hoặc 2y=-1
                 x= -4       hoặc   y=-1/2

1 tháng 9 2021

a)\(5x^2-4\left(x^2-2x+1\right)-5=5\left(x^2-1\right)-4\left(x-1\right)^2=5\left(x-1\right)\left(x+1\right)-4\left(x-1\right)^2=\left(x-1\right)\left(5x+5-4x+4\right)=\left(x-1\right)\left(x+9\right)\)

b) \(9x^2+6x-4y^2+4y=\left(9x^2+6x+1\right)-\left(4y^2-4y+1\right)=\left(3x+1\right)^2-\left(2y-1\right)^2=\left(3x+1-2y+1\right)\left(3x+1+2y-1\right)=\left(3x-2y+2\right)\left(3x+2y\right)\)

a: \(5x^2-4\left(x^2-2x+1\right)-5\)

\(=5x^2-4x^2+8x-4-5\)

\(=x^2+8x-9\)

\(=\left(x+9\right)\left(x-1\right)\)

b: \(9x^2+6x-4y^2+4y\)

\(=\left(3x+2y\right)\left(3x-2y\right)+2\left(3x+2y\right)\)

\(=\left(3x+2y\right)\left(3x-2y+2\right)\)

25 tháng 12 2021

= ( x2 - 4y2 ) - ( 2x + 4y )

= ( x - 2y ) ( x + 2y ) - 2 ( x - 2y )

= ( x - 2y ) ( x + 2y - 2 )

25 tháng 12 2021

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)