tim gia tri lon nhat
h=(3x-2y) ^2 -(4y-6x) ^2 |xy-24|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = 12 - (3x^2+6x+3) = 12 - 3.(x+1)^2 <= 12
Dấu "=" xảy ra <=> x+1 = 0 <=> x = -1
Vậy GTLN của M = 12 <=> x = -1
k mk nha
\(M=-3x^2-6x+9\)
\(=\left(-3x^2-6x-3\right)+12\)
\(=12-3\left(x^2+2x+1\right)\)
\(=12-\left(x+1\right)^2\)
Do \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow M\le12\)
Dấu = xảy ra khi \(\left(x+1\right)^2=0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
Vậy \(M_{Max}=12\Leftrightarrow x=-1\)
A= x2-2x = ( x2-2x + 1 ) - 1 = -1 (x-1)2 . Vì (x-1)2 lớn hơn hoặc bằng 0 ==> Min A = 1. Khi x = 1
B = -( x2- 4x + 4 +1) = -1-(x-2)2 < -1 ==> Max B = - 1 khi x = 2
Phân tích đa thức x4 + 6x3+11x2+6x = x(x+1)(x+2)(x+3) thành nhân tử tích của 4 số tự nhiên liên tiếp chia hết cho 24
Ta có \(\frac{1}{3x-2\sqrt{6x}+5}=\frac{1}{\left(\left(\sqrt{3x}\right)^2-2.\sqrt{3x}.\sqrt{2}+2\right)+3}\)
\(=\frac{1}{\left(\sqrt{3x}-\sqrt{2}\right)^2+3}\le\frac{1}{3}\)
Vậy GTLN là \(\frac{1}{3}\)đạt được khi x = \(\frac{2}{3}\)
Nguyễn Ngọc Lộc ?Amanda?Trần Quốc KhanhNguyễn Lê Phước ThịnhAkai HarumaPhạm Lan HươngHoàng Thị Ánh Phương Phạm Thị Diệu HuyềnVũ Minh TuấnTrên con đường thành công không có dấu chân của kẻ lười biếng
ta có:
\(\left(3x-2y\right)^2\)> 0
\(\left(4y-6x\right)^2\)> 0
\(\left|xy-24\right|\)> 0
dấu "=" xảy ra (=)
\(\hept{\begin{cases}\left(3x-2y\right)^2=0\\\left(4y-6x\right)^2=0\\\left|xy-24\right|=0\end{cases}}\left(=\right)\hept{\begin{cases}3x-2y=0\\4y-6x=0\\xy-24=0\end{cases}}\)\(\)còn lại mk chưa tính ra
bạn ơi nếu làm thế này là sai đó,các biến ở các hạnh tử giống nhau mà
Ta có: \(\dfrac{1+2y}{18}=\dfrac{1+4y}{24}\)
\(\Rightarrow\) 24 . (1 + 2y) = 18 . (1 + 4y)
\(\Rightarrow\) 24 + 48y = 18 + 72y
\(\Rightarrow\) 24 - 18 = 72y - 48y
\(\Rightarrow\) 6 = 24y
\(\Rightarrow\) y = \(\dfrac{1}{4}\)
Thay y = \(\dfrac{1}{4}\) ta có:
\(\dfrac{1+1}{24}=\dfrac{1+\dfrac{3}{2}}{6x}\)
\(\Rightarrow\) \(\dfrac{1}{12}=\dfrac{\dfrac{5}{2}}{6x}\)
\(\Rightarrow\) \(6x=\dfrac{5}{2}.12\)
\(\Rightarrow\) \(6x=30\)
\(\Rightarrow\) \(x=5\)
Vậy x = 5 và y = \(\dfrac{1}{4}\)
\(H=\left(3x-2y\right)^2-\left(4y-6x\right)^2-\left|xy-24\right|\)
\(=\left(3x-2y\right)^2-4\left(3x-2y\right)^2-\left|xy-24\right|\)
\(=-3\left(3x-2y\right)^2-\left|xy-24\right|\)
\(=-3\left[\left(3x-2y\right)^2+\left|xy-24\right|\right]\le0\)
Dấu "=" khi \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\xy=24\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\y=6\end{cases}}\)hoặc \(\hept{\begin{cases}x=-4\\y=-6\end{cases}}\)
\(H=\left(3x-2y\right)^2-\left(4x-6x\right)^2-\left|xy-24\right|\)
\(=\left(3x-2y\right)^2-4.\left(3x+2y\right)^2-\left|xy-24\right|\)
\(=-3.\left(3x-2y\right)^2-\left|xy-24\right|\)
\(=-3.\left[\left(3x-2y\right)^2+\left|xy-24\right|\right]\le0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\xy=24\end{cases}=>\hept{\begin{cases}x=4\\y=6\end{cases}or\hept{\begin{cases}x=-4\\x=-6\end{cases}}}}\)