K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2015

Xét \(\Delta\)AOB và \(\Delta\)COD. TA CÓ:

BO=OD

OA=OC

AOB=COD(đối đỉnh)

=> \(\Delta\)AOB=\(\Delta\)COD(c-g-c)

=>AOB=COD(hai góc tương ứng)

mà 2 góc này ở vị trí so le trong

=> AB//CD

A C B D O

(hình hơi xấu =P)

a,Xét tam giác ABO và tam giác COD có:

BO=OD (vì O là TĐ của BD)

AO=OC (vì O là TĐ của AC)

AOB = DOC (đối đỉnh)

\(\Rightarrow\)tam giác ABO=tam giác COD (c.g.c)

\(\Rightarrow\)AB=CD (hai cạnh tương ứng)

và BAO=OCD (hai góc tương ứng)

Mà hai góc này ở vị trí so le trong tạo bởi AC cắt AB và DC => AB song song với CD

b, Xét tam giác AOD và tam giác OCD có:

BO=OD (vì O là TĐ của BD)

AO=OC (vì O là TĐ của AC)

AOD=BOC (đối đỉnh)

\(\Rightarrow\)tam giác AOD=tam giác OCD (c.g.c)

\(\Rightarrow\)AD=BC (hai cạnh tương ứng)

và BCO=OAD (hai góc tương ứng)

Mà hai góc này ở vị trí so le trong tạo bởi AC cắt BC và AD => BC song song với AD

*Lưu ý: những chữ số viết liền nhau mà không ghi chữ "tam giác'' (như ABC) xin tự hiểu là góc

24 tháng 8 2016

bn ơi!

bn ko cho pyt đó là hình j thỳ sao nó cắt nhau đây?

lại 1 mâu thuẫn nữa: AB// BD(gt) z làm sao mà nó cắt nhau?hihi

24 tháng 8 2016

rk sao mình làm đc rùi hả bạn

15 tháng 12 2016

dễ v~~~ 

16 tháng 12 2016

mình ko biết cách c/m thẳng hàng ở câu c thôi ai giúp với

15 tháng 11 2023

a: Xét ΔOAD và ΔOCB có

OA=OC

\(\widehat{AOD}=\widehat{COB}\)

OD=OB

Do đó: ΔOAD=ΔOCB

=>AD=CB và \(\widehat{OAD}=\widehat{OCB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AD//BC

b: Xét ΔOAB và ΔOCD có

OA=OC

\(\widehat{AOB}=\widehat{COD}\)

OB=OD

Do đó: ΔOAB=ΔOCD

=>AB=CD

Xét ΔABC và ΔCDA có

AB=CD

BC=DA

AC chung

Do đó: ΔABC=ΔCDA

=>\(\widehat{ABC}=\widehat{CDA}\)

c: Xét ΔOBN và ΔODM có

OB=OD

\(\widehat{OBN}=\widehat{ODM}\)

BN=DM

Do đó: ΔOBN=ΔODM

=>\(\widehat{BON}=\widehat{DOM}\)

mà \(\widehat{DOM}+\widehat{BOM}=180^0\)

nên \(\widehat{BON}+\widehat{BOM}=180^0\)

=>\(\widehat{MON}=90^0\)

=>M,O,N thẳng hàng

d: Xét ΔOAE và ΔOCF có

OA=OC

\(\widehat{AOE}=\widehat{COF}\)

AE=CF\(\left(AE=\dfrac{AD}{2}=\dfrac{BC}{2}=CF\right)\)

Do đó: ΔOAE=ΔOCF

=>\(\widehat{AOE}=\widehat{COF}\)

mà \(\widehat{AOE}+\widehat{EOC}=180^0\)

nên \(\widehat{COF}+\widehat{COE}=180^0\)

=>\(\widehat{FOE}=180^0\)

=>F,O,E thẳng hàng

mà OE=OF

nên O là trung điểm của EF

26 tháng 11 2023

1:

a: Xét ΔOAB và ΔOCD có

\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)

AB=CD

\(\widehat{OBA}=\widehat{ODC}\)(hai góc so le trong, AB//CD)

Do đó: ΔOAB=ΔOCD

=>OA=OC và OB=OD

=>O là trung điểm chung của AC và BD

b: Xét ΔOAD và ΔOCB có

OA=OC

\(\widehat{AOD}=\widehat{COB}\)

OD=OB

Do đó: ΔOAD=ΔOCB

=>\(\widehat{OAD}=\widehat{OCB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AD//BC

c: ΔOAD=ΔOCB

=>AD=BC

2:

a: Xét ΔAHO vuông tại H và ΔCKO vuông tại K có

OA=OC

\(\widehat{AOH}=\widehat{COK}\)

Do đó: ΔAHO=ΔCKO

=>AH=CK và OH=OK

b: Xét ΔAOK và ΔCOH có

OA=OC

\(\widehat{AOK}=\widehat{COH}\)

OK=OH

Do đó; ΔAOK=ΔCOH

=>\(\widehat{OAK}=\widehat{OCH}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AK//CH

c: OH=OK

H,O,K thẳng hàng

Do đó: O là trung điểm của HK

d: AH\(\perp\)BD

CK\(\perp\)BD

Do đó: AH//CK

=>AE//CF

Xét tứ giác AECF có

AE//CF

AF//CE

Do đó: AECF là hình bình hành

=>AC cắt EF tại trung điểm của mỗi đường

mà O là trung điểm của AC

nen O là trung điểm của EF

3: Xét tứ giác AMCN có

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

=>AC cắt MN tại trung điểm của mỗi đường

mà O là trung điểm của AC

nên O là trung điểm của MN

4: Xét ΔOIB và ΔOVD có

\(\widehat{IBO}=\widehat{VDO}\)

OB=OD

\(\widehat{IOB}=\widehat{VOD}\)

Do đó: ΔOIB=ΔOVD

=>BI=DV

24 tháng 5 2019

Giải bài 59 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

Gọi KO cắt AB, CD lần lượt tại M, N.

ΔKDN có AM // DN (A ∈ KD, M ∈ KN) ⇒ Giải bài 59 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8 (Hệ quả định lý Ta-let)

ΔKCN có BM // CN (M ∈ KN, B ∈ KC) ⇒ Giải bài 59 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8 (Hệ quả định lý Ta-let)

Giải bài 59 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

ΔOCN có AM // NC (A ∈ OC, M ∈ ON) ⇒ Giải bài 59 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8 (Hệ quả định lý Ta-let)

ΔODN có MB // ND (M ∈ ON, B ∈ OD) ⇒ Giải bài 59 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8 (Hệ quả định lý Ta-let)

Giải bài 59 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

Từ (1) và (2) suy ra Giải bài 59 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8 ⇒ CN = DN ⇒ AM = MB

Vậy M, N là trung điểm AB, CD.